This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2004 Baltic Way, 20

Tags: geometry , ratio
Three fixed circles pass through the points $A$ and $B$. Let $X$ be a variable point on the first circle different from $A$ and $B$. The line $AX$ intersects the other two circles at $Y$ and $Z$ (with $Y$ between $X$ and $Z$). Show that the ratio $\frac{XY}{YZ}$ is independent of the position of $X$.

2000 Tournament Of Towns, 3

In a triangle $ABC, AB = c, BC = a, CA = b$, and $a < b < c$. Points $B'$ and $A'$ are chosen on the rays $BC$ and $AC$ respectively so that $BB'= AA'= c$. Points $C''$ and $B''$ are chosen on the rays $CA$ and $BA$ so that $CC'' = BB'' = a$. Find the ratio of the segment $A'B'$ to the segment $C'' B''$. (R Zhenodarov)

1994 AMC 12/AHSME, 20

Suppose $x,y,z$ is a geometric sequence with common ratio $r$ and $x \neq y$. If $x, 2y, 3z$ is an arithmetic sequence, then $r$ is $ \textbf{(A)}\ \frac{1}{4} \qquad\textbf{(B)}\ \frac{1}{3} \qquad\textbf{(C)}\ \frac{1}{2} \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ 4$

1999 French Mathematical Olympiad, Problem 3

For which acute-angled triangles is the ratio of the smallest side to the inradius the maximum?

2011 AIME Problems, 12

Six men and some number of women stand in a line in random order. Let $p$ be the probability that a group of at least four men stand together in the line, given that every man stands next to at least one other man. Find the least number of women in the line such that $p$ does not exceed 1 percent.

1954 Moscow Mathematical Olympiad, 280

Tags: locus , ratio , geometry
Rays $l_1$ and $l_2$ pass through a point $O$. Segments $OA_1$ and $OB_1$ on $l_1$, and $OA_2$ and $OB_2$ on $l_2$, are drawn so that $\frac{OA_1}{OA_2} \ne \frac{OB_1}{OB_2}$ . Find the set of all intersection points of lines $A_1A_2$ and $B_1B_2$ as $l_2$ rotates around $O$ while $l_1$ is fixed.

2014 South East Mathematical Olympiad, 2

Let $n\geq 4$ be a positive integer.Out of $n$ people,each of two individuals play table tennis game(every game has a winner).Find the minimum value of $n$,such that for any possible outcome of the game,there always exist an ordered four people group $(a_{1},a_{2},a_{3},a_{4})$,such that the person $a_{i}$ wins against $a_{j}$ for any $1\leq i<j\leq 4$

2019 Durer Math Competition Finals, 4

Let $ABC$ be an acute-angled triangle having angles $\alpha,\beta,\gamma$ at vertices $A, B, C$ respectively. Let isosceles triangles $BCA_1, CAB_1, ABC_1$ be erected outwards on its sides, with apex angles $2\alpha ,2\beta ,2\gamma$ respectively. Let $A_2$ be the intersection point of lines $AA_1$ and $B_1C_1$ and let us define points $B_2$ and $C_2$ analogously. Find the exact value of the expression $$\frac{AA_1}{A_2A_1}+\frac{BB_1}{B_2B_1}+\frac{CC_1}{C_2C_1}$$

2006 Junior Balkan Team Selection Tests - Romania, 1

Tags: angle , ratio , geometry , median
Let $ABC$ be a triangle and $D$ a point inside the triangle, located on the median of $A$. Prove that if $\angle BDC = 180^o - \angle BAC$, then $AB \cdot CD = AC \cdot BD$.

2021 South Africa National Olympiad, 2

Let $PAB$ and $PBC$ be two similar right-angled triangles (in the same plane) with $\angle PAB = \angle PBC = 90^\circ$ such that $A$ and $C$ lie on opposite sides of the line $PB$. If $PC = AC$, calculate the ratio $\frac{PA}{AB}$.

2014 AMC 12/AHSME, 4

Tags: ratio
Susie pays for $4$ muffins and $3$ bananas. Calvin spends twice as much paying for $2$ muffins and $16$ bananas. A muffin is how many times as expensive as a banana? $ \textbf {(A) } \frac{3}{2} \qquad \textbf {(B) } \frac{5}{3} \qquad \textbf {(C) } \frac{7}{4} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \frac{13}{4}$

1954 AMC 12/AHSME, 36

Tags: ratio
A boat has a speed of $ 15$ mph in still water. In a stream that has a current of $ 5$ mph it travels a certain distance downstream and returns. The ratio of the average speed for the round trip to the speed in still water is: $ \textbf{(A)}\ \frac{5}{4} \qquad \textbf{(B)}\ \frac{1}{1} \qquad \textbf{(C)}\ \frac{8}{9} \qquad \textbf{(D)}\ \frac{7}{8} \qquad \textbf{(E)}\ \frac{9}{8}$

2013 USAMTS Problems, 3

An infinite sequence of positive real numbers $a_1,a_2,a_3,\dots$ is called [i]territorial[/i] if for all positive integers $i,j$ with $i<j$, we have $|a_i-a_j|\ge\tfrac1j$. Can we find a territorial sequence $a_1,a_2,a_3,\dots$ for which there exists a real number $c$ with $a_i<c$ for all $i$?

2008 AMC 10, 14

Tags: ratio
Older television screens have an aspect ratio of $ 4: 3$. That is, the ratio of the width to the height is $ 4: 3$. The aspect ratio of many movies is not $ 4: 3$, so they are sometimes shown on a television screen by 'letterboxing' - darkening strips of equal height at the top and bottom of the screen, as shown. Suppose a movie has an aspect ratio of $ 2: 1$ and is shown on an older television screen with a $ 27$-inch diagonal. What is the height, in inches, of each darkened strip? [asy]unitsize(1mm); defaultpen(linewidth(.8pt)); filldraw((0,0)--(21.6,0)--(21.6,2.7)--(0,2.7)--cycle,grey,black); filldraw((0,13.5)--(21.6,13.5)--(21.6,16.2)--(0,16.2)--cycle,grey,black); draw((0,2.7)--(0,13.5)); draw((21.6,2.7)--(21.6,13.5));[/asy]$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 2.25 \qquad \textbf{(C)}\ 2.5 \qquad \textbf{(D)}\ 2.7 \qquad \textbf{(E)}\ 3$

2012 Turkey Junior National Olympiad, 2

In a convex quadrilateral $ABCD$, the diagonals are perpendicular to each other and they intersect at $E$. Let $P$ be a point on the side $AD$ which is different from $A$ such that $PE=EC.$ The circumcircle of triangle $BCD$ intersects the side $AD$ at $Q$ where $Q$ is also different from $A$. The circle, passing through $A$ and tangent to line $EP$ at $P$, intersects the line segment $AC$ at $R$. If the points $B, R, Q$ are concurrent then show that $\angle BCD=90^{\circ}$.

2014 Harvard-MIT Mathematics Tournament, 31

Compute \[\sum_{k=1}^{1007}\left(\cos\left(\dfrac{\pi k}{1007}\right)\right)^{2014}.\]

2003 Federal Competition For Advanced Students, Part 1, 4

In a parallelogram $ABCD$, points $E$ and $F$ are the midpoints of $AB$ and $BC$, respectively, and $P$ is the intersection of $EC$ and $FD$. Prove that the segments $AP,BP,CP$ and $DP$ divide the parallelogram into four triangles whose areas are in the ratio $1 : 2 : 3 : 4$.

2018 BAMO, 5

To [i]dissect [/i] a polygon means to divide it into several regions by cutting along finitely many line segments. For example, the diagram below shows a dissection of a hexagon into two triangles and two quadrilaterals: [img]https://cdn.artofproblemsolving.com/attachments/0/a/378e477bcbcec26fc90412c3eada855ae52b45.png[/img] An [i]integer-ratio[/i] right triangle is a right triangle whose side lengths are in an integer ratio. For example, a triangle with sides $3,4,5$ is an[i] integer-ratio[/i] right triangle, and so is a triangle with sides $\frac52 \sqrt3 ,6\sqrt3, \frac{13}{2} \sqrt3$. On the other hand, the right triangle with sides$ \sqrt2 ,\sqrt5, \sqrt7$ is not an [i]integer-ratio[/i] right triangle. Determine, with proof, all integers $n$ for which it is possible to completely [i]dissect [/i] a regular $n$-sided polygon into [i]integer-ratio[/i] right triangles.

Swiss NMO - geometry, 2022.1

Tags: geometry , ratio
Let $k$ be a circle with centre $M$ and let $AB$ be a diameter of $k$. Furthermore, let $C$ be a point on $k$ such that $AC = AM$. Let $D$ be the point on the line $AC$ such that $CD = AB$ and $C$ lies between $A$ and $D$. Let $E$ be the second intersection of the circumcircle of $BCD$ with line $AB$ and $F$ be the intersection of the lines $ED$ and $BC$. The line $AF$ cuts the segment $BD$ in $X$. Determine the ratio $BX/XD$.

2001 AMC 12/AHSME, 22

In rectangle $ ABCD$, points $ F$ and $ G$ lie on $ \overline{AB}$ so that $ AF \equal{} FG \equal{} GB$ and $ E$ is the midpoint of $ \overline{DC}$. Also, $ \overline{AC}$ intersects $ \overline{EF}$ at $ H$ and $ \overline{EG}$ at $ J$. The area of the rectangle $ ABCD$ is $ 70$. Find the area of triangle $ EHJ$. [asy] size(180); pair A, B, C, D, E, F, G, H, J; A = origin; real length = 6; real width = 3.5; B = length*dir(0); C = (length, width); D = width*dir(90); F = length/3*dir(0); G = 2*length/3*dir(0); E = (length/2, width); H = extension(A, C, E, F); J = extension(A, C, E, G); draw(A--B--C--D--cycle); draw(G--E--F); draw(A--C); label("$A$", A, dir(180)); label("$D$", D, dir(180)); label("$B$", B, dir(0)); label("$C$", C, dir(0)); label("$F$", F, dir(270)); label("$E$", E, dir(90)); label("$G$", G, dir(270)); label("$H$", H, dir(140)); label("$J$", J, dir(340)); [/asy] $ \displaystyle \textbf{(A)} \ \frac {5}{2} \qquad \textbf{(B)} \ \frac {35}{12} \qquad \textbf{(C)} \ 3 \qquad \textbf{(D)} \ \frac {7}{2} \qquad \textbf{(E)} \ \frac {35}{8}$

2011 Purple Comet Problems, 20

Points $A$ and $B$ are the endpoints of a diameter of a circle with center $C$. Points $D$ and $E$ lie on the same diameter so that $C$ bisects segment $\overline{DE}$. Let $F$ be a randomly chosen point within the circle. The probability that $\triangle DEF$ has a perimeter less than the length of the diameter of the circle is $\tfrac{17}{128}$. There are relatively prime positive integers m and n so that the ratio of $DE$ to $AB$ is $\tfrac{m}{n}.$ Find $m + n$.

2017 India PRMO, 12

In a class, the total numbers of boys and girls are in the ratio $4 : 3$. On one day it was found that $8$ boys and $14$ girls were absent from the class, and that the number of boys was the square of the number of girls. What is the total number of students in the class?

1975 Canada National Olympiad, 4

For a positive number such as 3.27, 3 is referred to as the integral part of the number and .27 as the decimal part. Find a positive number such that its decimal part, its integral part, and the number itself form a geometric progression.

2011 AIME Problems, 4

In triangle $ABC$, $AB=\frac{20}{11} AC$. The angle bisector of $\angle A$ intersects $BC$ at point $D$, and point $M$ is the midpoint of $AD$. Let $P$ be the point of the intersection of $AC$ and $BM$. The ratio of $CP$ to $PA$ can be expressed in the form $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2010 Princeton University Math Competition, 3

Triangle $ABC$ has $AB = 4$, $AC = 5$, and $BC = 6$. An angle bisector is drawn from angle $A$, and meets $BC$ at $M$. What is the nearest integer to $100 \frac{AM}{CM}$?