This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2015 AMC 10, 8

Tags: ratio
Two years ago Pete was three times as old as his cousin Claire. Two years before that, Pete was four times as old as Claire. In how many years will the ratio of their ages be $2:1$? $\textbf{(A) }2\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }8$

1988 AIME Problems, 12

Tags: geometry , ratio , euler
Let $P$ be an interior point of triangle $ABC$ and extend lines from the vertices through $P$ to the opposite sides. Let $a$, $b$, $c$, and $d$ denote the lengths of the segments indicated in the figure. Find the product $abc$ if $a + b + c = 43$ and $d = 3$. [asy] size(200); defaultpen(fontsize(10)); pair A=origin, B=(14,0), C=(9,12), D=midpoint(B--C), E=midpoint(A--C), F=midpoint(A--B), P=centroid(A,B,C); draw(D--A--B--C--A^^B--E^^C--F); dot(A^^B^^C^^P); label("$a$", P--A, dir(-90)*dir(P--A)); label("$b$", P--B, dir(90)*dir(P--B)); label("$c$", P--C, dir(90)*dir(P--C)); label("$d$", P--D, dir(90)*dir(P--D)); label("$d$", P--E, dir(-90)*dir(P--E)); label("$d$", P--F, dir(-90)*dir(P--F)); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$P$", P, 1.8*dir(285));[/asy]

2023 Argentina National Olympiad Level 2, 3

In the parallelogram $ABCD$, the length of side $AB$ is half the length of side $BC$. The bisector of angle $\angle ABC$ intersects side $AD$ at point $K$ and diagonal $AC$ at point $L$. The bisector of angle $\angle ADC$ intersects the extension of side $AB$ at point $M$, with $B$ between $A$ and $M$. The line $ML$ intersects side $AD$ at point $F$. Calculate the ratio $\frac{AF}{AD}$.

2007 Princeton University Math Competition, 8

What is the area of the region defined by $x^2+3y^2 \le 4$ and $y^2+3x^2 \le 4$?

1995 National High School Mathematics League, 8

Consider the maximum value of circular cone inscribed to a sphere, the ratio of it to the volume of the sphere is________.

2004 Poland - Second Round, 2

Points $D$ and $E$ are taken on sides $BC$ and $CA$ of a triangle $ BD\equal{}AE$. Segments $AD$ and $BE$ meet at $P$. The bisector of $\angle ACB$ intersects $AD$ and $BE$ at $Q$ and $R$ respectively. Prove that $ \frac{PQ}{PR}\equal{}\frac{AD}{BE}$.

1997 Estonia National Olympiad, 3

Each diagonal of a convex pentagon is parallel to one of its sides. Prove that the ratio of the length of each diagonal to the length of the corresponding parallel side is the same, and find this ratio.

2009 Stanford Mathematics Tournament, 2

The pattern in the fi gure below continues inward in finitely. The base of the biggest triangle is 1. All triangles are equilateral. Find the shaded area. [asy] defaultpen(linewidth(0.8)); pen blu = rgb(0,112,191); real r=sqrt(3); fill((8,0)--(0,8r)--(-8,0)--cycle, blu); fill(origin--(4,4r)--(-4,4r)--cycle, white); fill((2,2r)--(0,4r)--(-2,2r)--cycle, blu); fill((0,2r)--(1,3r)--(-1,3r)--cycle, white);[/asy]

1970 Regional Competition For Advanced Students, 3

$E_1$ and $E_2$ are parallel planes and their distance is $p$. (a) How long is the seitenkante of the regular octahedron such that a side lies in $E_1$ and another in $E_2$? (b) $E$ is a plane between $E_1$ and $E_2$, parallel to $E_1$ and $E_2$, so that its distances from $E_1$ and $E_2$ are in ratio $1:2$ Draw the intersection figure of $E$ and the octahedron for $P=4\sqrt{\frac32}$ cm and justifies, why the that figure must look in such a way

1999 AMC 8, 12

Tags: ratio , percent
The ratio of the number of games won to the number of games lost (no ties) by the Middle School Middies is $11:4$ . To the nearest whole percent, what percent of its games did the team lose? $ \text{(A)}\ 24\qquad\text{(B)}\ 27\qquad\text{(C)}\ 36\qquad\text{(D)}\ 45\qquad\text{(E)}\ 73 $

2008 Iran MO (3rd Round), 1

Prove that for $ n > 0$ and $ a\neq0$ the polynomial $ p(z) \equal{} az^{2n \plus{} 1} \plus{} bz^{2n} \plus{} \bar bz \plus{} \bar a$ has a root on unit circle

2001 All-Russian Olympiad, 3

Let the circle $ {\omega}_{1}$ be internally tangent to another circle $ {\omega}_{2}$ at $ N$.Take a point $ K$ on $ {\omega}_{1}$ and draw a tangent $ AB$ which intersects $ {\omega}_{2}$ at $ A$ and $ B$. Let $M$ be the midpoint of the arc $ AB$ which is on the opposite side of $ N$. Prove that, the circumradius of the $ \triangle KBM$ doesnt depend on the choice of $ K$.

2003 USA Team Selection Test, 2

Tags: geometry , ratio
Let $ABC$ be a triangle and let $P$ be a point in its interior. Lines $PA$, $PB$, $PC$ intersect sides $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Prove that \[ [PAF]+[PBD]+[PCE]=\frac{1}{2}[ABC] \] if and only if $P$ lies on at least one of the medians of triangle $ABC$. (Here $[XYZ]$ denotes the area of triangle $XYZ$.)

2007 F = Ma, 23

Tags: ratio
If a planet of radius $R$ spins with an angular velocity $\omega$ about an axis through the North Pole, what is the ratio of the normal force experienced by a person at the equator to that experienced by a person at the North Pole? Assume a constant gravitational field $g$ and that both people are stationary relative to the planet and are at sea level. $ \textbf{(A)}\ g/R\omega^2$ $\textbf{(B)}\ R\omega^2/g $ $\textbf{(C)}\ 1- R\omega^2/g$ $\textbf{(D)}\ 1+g/R\omega^2$ $\textbf{(E)}\ 1+R\omega^2/g $

1998 National Olympiad First Round, 12

In a right triangle, ratio of the hypotenuse over perimeter of the triangle determines an interval on real numbers. Find the midpoint of this interval? $\textbf{(A)}\ \frac{2\sqrt{2} \plus{}1}{4} \qquad\textbf{(B)}\ \frac{\sqrt{2} \plus{}1}{2} \qquad\textbf{(C)}\ \frac{2\sqrt{2} \minus{}1}{4} \\ \qquad\textbf{(D)}\ \sqrt{2} \minus{}1 \qquad\textbf{(E)}\ \frac{\sqrt{2} \minus{}1}{2}$

2010 AMC 12/AHSME, 8

Triangle $ ABC$ has $ AB \equal{} 2 \cdot AC$. Let $ D$ and $ E$ be on $ \overline{AB}$ and $ \overline{BC}$, respectively, such that $ \angle{BAE} \equal{} \angle{ACD}.$ Let $ F$ be the intersection of segments $ AE$ and $ CD$, and suppose that $ \triangle{CFE}$ is equilateral. What is $ \angle{ACB}$? $ \textbf{(A)}\ 60^{\circ}\qquad \textbf{(B)}\ 75^{\circ}\qquad \textbf{(C)}\ 90^{\circ}\qquad \textbf{(D)}\ 105^{\circ}\qquad \textbf{(E)}\ 120^{\circ}$

2010 AIME Problems, 14

In right triangle $ ABC$ with right angle at $ C$, $ \angle BAC < 45$ degrees and $ AB \equal{} 4$. Point $ P$ on $ AB$ is chosen such that $ \angle APC \equal{} 2\angle ACP$ and $ CP \equal{} 1$. The ratio $ \frac{AP}{BP}$ can be represented in the form $ p \plus{} q\sqrt{r}$, where $ p,q,r$ are positive integers and $ r$ is not divisible by the square of any prime. Find $ p\plus{}q\plus{}r$.

2010 Romanian Masters In Mathematics, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

1990 IMO Longlists, 61

Prove that we can fill in the three dimensional space with regular tetrahedrons and regular octahedrons, all of which have the same edge-lengths. Also find the ratio of the number of the regular tetrahedrons used and the number of the regular octahedrons used.

2019 German National Olympiad, 5

We are given two positive integers $p$ and $q$. Step by step, a rope of length $1$ is cut into smaller pieces as follows: In each step all the currently longest pieces are cut into two pieces with the ratio $p:q$ at the same time. After an unknown number of such operations, the currently longest pieces have the length $x$. Determine in terms of $x$ the number $a(x)$ of different lengths of pieces of rope existing at that time.

2007 Turkey Team Selection Test, 2

Two different points $A$ and $B$ and a circle $\omega$ that passes through $A$ and $B$ are given. $P$ is a variable point on $\omega$ (different from $A$ and $B$). $M$ is a point such that $MP$ is the bisector of the angle $\angle{APB}$ ($M$ lies outside of $\omega$) and $MP=AP+BP$. Find the geometrical locus of $M$.

2004 Korea - Final Round, 1

An isosceles triangle with $AB=AC$ has an inscribed circle $O$, which touches its sides $BC,CA,AB$ at $K,L,M$ respectively. The lines $OL$ and $KM$ intersect at $N$; the lines $BN$ and $CA$ intersect at $Q$. Let $P$ be the foot of the perpendicular from $A$ on $BQ$. Suppose that $BP=AP+2\cdot PQ$. Then, what values can the ratio $\frac{AB}{BC}$ assume?

2005 Bundeswettbewerb Mathematik, 3

Two circles $k_1$ and $k_2$ intersect at two points $A$ and $B$. Some line through the point $B$ meets the circle $k_1$ at a point $C$ (apart from $B$), and the circle $k_2$ at a point $E$ (apart from $B$). Another line through the point $B$ meets the circle $k_1$ at a point $D$ (apart from $B$), and the circle $k_2$ at a point $F$ (apart from $B$). Assume that the point $B$ lies between the points $C$ and $E$ and between the points $D$ and $F$. Finally, let $M$ and $N$ be the midpoints of the segments $CE$ and $DF$. Prove that the triangles $ACD$, $AEF$ and $AMN$ are similar to each other.

2014 IPhOO, 2

Tags: ratio , rotation
An ice ballerina rotates at a constant angular velocity at one particular point. That is, she does not translationally move. Her arms are fully extended as she rotates. Her moment of inertia is $I$. Now, she pulls her arms in and her moment of inertia is now $\frac{7}{10}I$. What is the ratio of the new kinetic energy (arms in) to the initial kinetic energy (arms out)? $ \textbf {(A) } \dfrac {7}{10} \qquad \textbf {(B) } \dfrac {49}{100} \qquad \textbf {(C) } 1 \qquad \textbf {(C) } \dfrac {100}{49} \qquad \textbf {(E) } \dfrac {10}{7} $ [i]Problem proposed by Ahaan Rungta[/i]

2010 Tournament Of Towns, 2

Pete has an instrument which can locate the midpoint of a line segment, and also the point which divides the line segment into two segments whose lengths are in a ratio of $n : (n + 1)$, where $n$ is any positive integer. Pete claims that with this instrument, he can locate the point which divides a line segment into two segments whose lengths are at any given rational ratio. Is Pete right?