This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

2005 CentroAmerican, 4

Two players, Red and Blue, play in alternating turns on a 10x10 board. Blue goes first. In his turn, a player picks a row or column (not chosen by any player yet) and color all its squares with his own color. If any of these squares was already colored, the new color substitutes the old one. The game ends after 20 turns, when all rows and column were chosen. Red wins if the number of red squares in the board exceeds at least by 10 the number of blue squares; otherwise Blue wins. Determine which player has a winning strategy and describe this strategy.

1992 Mexico National Olympiad, 6

Tags: area , rectangle , geometry
$ABCD$ is a rectangle. $I$ is the midpoint of $CD$. $BI$ meets $AC$ at $M$. Show that the line $DM$ passes through the midpoint of $BC$. $E$ is a point outside the rectangle such that $AE = BE$ and $\angle AEB = 90^o$. If $BE = BC = x$, show that $EM$ bisects $\angle AMB$. Find the area of $AEBM$ in terms of $x$.

1996 IMO Shortlist, 6

Let the sides of two rectangles be $ \{a,b\}$ and $ \{c,d\},$ respectively, with $ a < c \leq d < b$ and $ ab < cd.$ Prove that the first rectangle can be placed within the second one if and only if \[ \left(b^2 \minus{} a^2\right)^2 \leq \left(bc \minus{} ad \right)^2 \plus{} \left(bd \minus{} ac \right)^2.\]

1994 Austrian-Polish Competition, 3

A rectangular building consists of $30$ square rooms situated like the cells of a $2 \times 15$ board. In each room there are three doors, each of which leads to another room (not necessarily different). How many ways are there to distribute the doors between the rooms so that it is possible to get from any room to any other one without leaving the building?

1977 Czech and Slovak Olympiad III A, 2

The numbers $p,q>0$ are given. Construct a rectangle $ABCD$ with $AE=p,AF=q$ where $E,F$ are midpoints of $BC,CD,$ respectively. Discuss conditions of solvability.

2016 Costa Rica - Final Round, G3

Let the $JHIZ$ be a rectangle and let $A$ and $C$ be points on the sides $ZI$ and $ZJ$, respectively. The perpendicular from $A$ on $CH$ intersects line $HI$ at point $X$ and perpendicular from $C$ on $AH$ intersects line $HJ$ at point $Y$. Show that points $X, Y$, and $Z$ are collinear.

2011 Argentina National Olympiad Level 2, 6

A rectangle is divided into several similar isosceles triangles. Determine the possible values of the angles of the triangles.

1992 Vietnam National Olympiad, 3

Label the squares of a $1991 \times 1992$ rectangle $(m, n)$ with $1 \leq m \leq 1991$ and $1 \leq n \leq 1992$. We wish to color all the squares red. The first move is to color red the squares $(m, n), (m+1, n+1), (m+2, n+1)$for some $m < 1990, n < 1992$. Subsequent moves are to color any three (uncolored) squares in the same row, or to color any three (uncolored) squares in the same column. Can we color all the squares in this way?

1986 Traian Lălescu, 2.4

Prove that $ ABCD $ is a rectangle if and only if $ MA^2+MC^2=MB^2+MD^2, $ for all spatial points $ M. $

2010 AMC 8, 18

A decorative window is made up of a rectangle with semicircles at either end. The ratio of $AD$ to $AB$ is $3:2$. And $AB$ is 30 inches. What is the ratio of the area of the rectangle to the combined area of the semicircle. [asy] import graph; size(5cm); real lsf=0; pen dps=linewidth(0.7)+fontsize(8); defaultpen(dps); pen ds=black; real xmin=-4.27,xmax=14.73,ymin=-3.22,ymax=6.8; draw((0,4)--(0,0)); draw((0,0)--(2.5,0)); draw((2.5,0)--(2.5,4)); draw((2.5,4)--(0,4)); draw(shift((1.25,4))*xscale(1.25)*yscale(1.25)*arc((0,0),1,0,180)); draw(shift((1.25,0))*xscale(1.25)*yscale(1.25)*arc((0,0),1,-180,0)); dot((0,0),ds); label("$A$",(-0.26,-0.23),NE*lsf); dot((2.5,0),ds); label("$B$",(2.61,-0.26),NE*lsf); dot((0,4),ds); label("$D$",(-0.26,4.02),NE*lsf); dot((2.5,4),ds); label("$C$",(2.64,3.98),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy] $ \textbf{(A)}\ 2:3 \qquad\textbf{(B)}\ 3:2\qquad\textbf{(C)}\ 6:\pi \qquad\textbf{(D)}\ 9: \pi \qquad\textbf{(E)}\ 30 : \pi$

2007 Turkey MO (2nd round), 2

Let $ABC$ be a triangle with $\angle B=90$. The incircle of $ABC$ touches the side $BC$ at $D$. The incenters of triangles $ABD$ and $ADC$ are $X$ and $Z$ , respectively. The lines $XZ$ and $AD$ are intersecting at the point $K$. $XZ$ and circumcircle of $ABC$ are intersecting at $U$ and $V$. Let $M$ be the midpoint of line segment $[UV]$ . $AD$ intersects the circumcircle of $ABC$ at $Y$ other than $A$. Prove that $|CY|=2|MK|$ .

2005 Postal Coaching, 6

Let $ABCD$ be a trapezoid such that $AB$ is parallel to $CD$, and let $E$ be the midpoint of its side $BC$. Suppose we can inscribe a circle into the quadrilateral $ABED$, and that we can inscribe a circle into the quadrilateral $AECD$. Denote $|AB|=a$, $|BC|=b$, $|CD|=c$, $|DA|=d$. Prove that \[a+c=\frac{b}{3}+d;\] \[\frac{1}{a}+\frac{1}{c}=\frac{3}{b}\]

1955 AMC 12/AHSME, 14

The length of rectangle R is $ 10$ percent more than the side of square S. The width of the rectangle is $ 10$ percent less than the side of the square. The ratio of the areas, R:S, is: $ \textbf{(A)}\ 99: 100 \qquad \textbf{(B)}\ 101: 100 \qquad \textbf{(C)}\ 1: 1 \qquad \textbf{(D)}\ 199: 200 \qquad \textbf{(E)}\ 201: 200$

2010 Contests, 3

A rectangle formed by the lines of checkered paper is divided into figures of three kinds: isosceles right triangles (1) with base of two units, squares (2) with unit side, and parallelograms (3) formed by two sides and two diagonals of unit squares (figures may be oriented in any way). Prove that the number of figures of the third kind is even. [img]http://up.iranblog.com/Files7/dda310bab8b6455f90ce.jpg[/img]

1995 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 2

On the figure, the quadrilateral $ ABCD$ is a rectangle, $ P$ lies on $ AD$ and $ Q$ on $ AB.$ The triangles $ PAQ, QBC,$ and $ PCD$ all have the same areas, and $ BQ \equal{} 2.$ How long is $ AQ$? [img]http://i250.photobucket.com/albums/gg265/geometry101/NielsHenrikAbel1995Number2.jpg[/img] A. 7/2 B. $ \sqrt{7}$ C. $ 2 \sqrt{3}$ D. $ 1 \plus{} \sqrt{5}$ E. Not uniquely determined

2019 India IMO Training Camp, P1

Let the points $O$ and $H$ be the circumcenter and orthocenter of an acute angled triangle $ABC.$ Let $D$ be the midpoint of $BC.$ Let $E$ be the point on the angle bisector of $\angle BAC$ such that $AE\perp HE.$ Let $F$ be the point such that $AEHF$ is a rectangle. Prove that $D,E,F$ are collinear.

2023 South Africa National Olympiad, 6

Let $ABIH$,$BDEC$ and $ACFG$ be arbitrary rectangles constructed (externally) on the sides of triangle $ABC$.Choose point $S$ outside rectangle $ABIH$ (on the opposite side as triangle $ABC$) such that $\angle SHI=\angle FAC$ and $\angle HIS=\angle EBC$.Prove that the lines $FI,EH$ and $CS$ are concurrent(i.e., the three lines intersect in one point).

2016 Korea Winter Program Practice Test, 2

Given an integer $n\geq 3$. For each $3\times3$ squares on the grid, call this $3\times3$ square isolated if the center unit square is white and other 8 squares are black, or the center unit square is black and other 8 squares are white. Now suppose one can paint an infinite grid by white or black, so that one can select an $a\times b$ rectangle which contains at least $n^2-n$ isolated $3\times 3$ square. Find the minimum of $a+b$ that such thing can happen. (Note that $a,b$ are positive reals, and selected $a\times b$ rectangle may have sides not parallel to grid line of the infinite grid.)

1950 AMC 12/AHSME, 47

A rectangle inscribed in a triangle has its base coinciding with the base $b$ of the triangle. If the altitude of the triangle is $h$, and the altitude $x$ of the rectangle is half the base of the rectangle, then: $\textbf{(A)}\ x=\dfrac{1}{2}h \qquad \textbf{(B)}\ x=\dfrac{bh}{b+h} \qquad \textbf{(C)}\ x=\dfrac{bh}{2h+b} \qquad \textbf{(D)}\ x=\sqrt{\dfrac{hb}{2}} \qquad \textbf{(E)}\ x=\dfrac{1}{2}b$

2014 AMC 8, 14

Rectangle $ABCD$ and right triangle $DCE$ have the same area. They are joined to form a trapezoid, as shown. What is $DE$? [asy] size(250); defaultpen(linewidth(0.8)); pair A=(0,5),B=origin,C=(6,0),D=(6,5),E=(18,0); draw(A--B--E--D--cycle^^C--D); draw(rightanglemark(D,C,E,30)); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,S); label("$D$",D,N); label("$E$",E,S); label("$5$",A/2,W); label("$6$",(A+D)/2,N); [/asy] $\textbf{(A) }12\qquad\textbf{(B) }13\qquad\textbf{(C) }14\qquad\textbf{(D) }15\qquad \textbf{(E) }16$

1996 Dutch Mathematical Olympiad, 4

A line $l$ intersects the segment $AB$ perpendicular to $C$. Three circles are drawn successively with $AB, AC$ and $BC$ as the diameter. The largest circle intersects $l$ in $D$. The segments $DA$ and $DB$ still intersect the two smaller circles in $E$ and $F$. a. Prove that quadrilateral $CFDE$ is a rectangle. b. Prove that the line through $E$ and $F$ touches the circles with diameters $AC$ and $BC$ in $E$ and $F$. [asy] unitsize (2.5 cm); pair A, B, C, D, E, F, O; O = (0,0); A = (-1,0); B = (1,0); C = (-0.3,0); D = intersectionpoint(C--(C + (0,1)), Circle(O,1)); E = (C + reflect(A,D)*(C))/2; F = (C + reflect(B,D)*(C))/2; draw(Circle(O,1)); draw(Circle((A + C)/2, abs(A - C)/2)); draw(Circle((B + C)/2, abs(B - C)/2)); draw(A--B); draw(interp(C,D,-0.4)--D); draw(A--D--B); dot("$A$", A, W); dot("$B$", B, dir(0)); dot("$C$", C, SE); dot("$D$", D, NW); dot("$E$", E, SE); dot("$F$", F, SW); [/asy]

2024 AMC 10, 16

All of the rectangles in the figure below, which is drawn to scale, are similar to the enclosing rectangle. Each number represents the area of the rectangle. What is length $AB$? [img]https://cdn.artofproblemsolving.com/attachments/3/b/298cf96ec8fc90c438e4936a05c260170eda01.png[/img] $\textbf{(A) }4+4\sqrt5\qquad\textbf{(B) }10\sqrt2\qquad\textbf{(C) }5+5\sqrt5\qquad\textbf{(D) }10\sqrt[4]{8}\qquad\textbf{(E) }20$

2001 Mediterranean Mathematics Olympiad, 1

Let $P$ and $Q$ be points on a circle $k$. A chord $AC$ of $k$ passes through the midpoint $M$ of $PQ$. Consider a trapezoid $ABCD$ inscribed in $k$ with $AB \parallel PQ \parallel CD$. Prove that the intersection point $X$ of $AD$ and $BC$ depends only on $k$ and $P,Q.$

1993 Vietnam Team Selection Test, 1

We call a rectangle of size $2 \times 3$ (or $3 \times 2$) without one cell in corner a $P$-rectangle. We call a rectangle of size $2 \times 3$ (or $3 \times 2$) without two cells in opposite (under center of rectangle) corners a $S$-rectangle. Using some squares of size $2 \times 2$, some $P$-rectangles and some $S$-rectangles, one form one rectangle of size $1993 \times 2000$ (figures don’t overlap each other). Let $s$ denote the sum of numbers of squares and $S$-rectangles used in such tiling. Find the maximal value of $s$.

2009 Princeton University Math Competition, 4

We divide up the plane into disjoint regions using a circle, a rectangle and a triangle. What is the greatest number of regions that we can get?