This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

2006 AIME Problems, 10

This is the one with the 8 circles? I made each circle into the square in which the circle is inscribed, then calculated it with that. It got the right answer but I don't think that my method is truly valid...

2010 JBMO Shortlist, 2

A $9\times 7$ rectangle is tiled with tiles of the two types: L-shaped tiles composed by three unit squares (can be rotated repeatedly with $90^\circ$) and square tiles composed by four unit squares. Let $n\ge 0$ be the number of the $2 \times 2 $ tiles which can be used in such a tiling. Find all the values of $n$.

1949-56 Chisinau City MO, 41

Prove that the bisectors of the angles of a rectangle, extended to their mutual intersection, form a square.

2009 Finnish National High School Mathematics Competition, 5

As in the picture below, the rectangle on the left hand side has been divided into four parts by line segments which are parallel to a side of the rectangle. The areas of the small rectangles are $A,B,C$ and $D$. Similarly, the small rectangles on the right hand side have areas $A^\prime,B^\prime,C^\prime$ and $D^\prime$. It is known that $A\leq A^\prime$, $B\leq B^\prime$, $C\leq C^\prime$ but $D\leq B^\prime$. [asy] import graph; size(12cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-4.3,xmax=12.32,ymin=-10.68,ymax=6.3; draw((0,3)--(0,0)); draw((3,0)--(0,0)); draw((3,0)--(3,3)); draw((0,3)--(3,3)); draw((2,0)--(2,3)); draw((0,2)--(3,2)); label("$A$",(0.86,2.72),SE*lsf); label("$B$",(2.38,2.7),SE*lsf); label("$C$",(2.3,1.1),SE*lsf); label("$D$",(0.82,1.14),SE*lsf); draw((5,2)--(11,2)); draw((5,2)--(5,0)); draw((11,0)--(5,0)); draw((11,2)--(11,0)); draw((8,0)--(8,2)); draw((5,1)--(11,1)); label("$A'$",(6.28,1.8),SE*lsf); label("$B'$",(9.44,1.82),SE*lsf); label("$C'$",(9.4,0.8),SE*lsf); label("$D'$",(6.3,0.86),SE*lsf); dot((0,3),linewidth(1pt)+ds); dot((0,0),linewidth(1pt)+ds); dot((3,0),linewidth(1pt)+ds); dot((3,3),linewidth(1pt)+ds); dot((2,0),linewidth(1pt)+ds); dot((2,3),linewidth(1pt)+ds); dot((0,2),linewidth(1pt)+ds); dot((3,2),linewidth(1pt)+ds); dot((5,0),linewidth(1pt)+ds); dot((5,2),linewidth(1pt)+ds); dot((11,0),linewidth(1pt)+ds); dot((11,2),linewidth(1pt)+ds); dot((8,0),linewidth(1pt)+ds); dot((8,2),linewidth(1pt)+ds); dot((5,1),linewidth(1pt)+ds); dot((11,1),linewidth(1pt)+ds); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy] Prove that the big rectangle on the left hand side has area smaller or equal to the area of the big rectangle on the right hand side, i.e. $A+B+C+D\leq A^\prime+B^\prime+C^\prime+D^\prime$.

2004 Postal Coaching, 7

Let $ABCD$ be a square, and $C$ the circle whose diameter is $AB.$ Let $Q$ be an arbitrary point on the segment $CD.$ We know that $QA$ meets $C$ on $E$ and $QB$ meets it on $F.$ Also $CF$ and $DE$ intersect in $M.$ show that $M$ belongs to $C.$

2018 JBMO Shortlist, G5

Given a rectangle $ABCD$ such that $AB = b > 2a = BC$, let $E$ be the midpoint of $AD$. On a line parallel to $AB$ through point $E$, a point $G$ is chosen such that the area of $GCE$ is $$(GCE)= \frac12 \left(\frac{a^3}{b}+ab\right)$$ Point $H$ is the foot of the perpendicular from $E$ to $GD$ and a point $I$ is taken on the diagonal $AC$ such that the triangles $ACE$ and $AEI$ are similar. The lines $BH$ and $IE$ intersect at $K$ and the lines $CA$ and $EH$ intersect at $J$. Prove that $KJ \perp AB$.

2024 Polish MO Finals, 1

Let $X$ be an interior point of a rectangle $ABCD$. Let the bisectors of $\angle DAX$ and $\angle CBX$ intersect in $P$. A point $Q$ satisfies $\angle QAP=\angle QBP=90^\circ$. Show that $PX=QX$.

2004 Romania Team Selection Test, 17

On a chess table $n\times m$ we call a [i]move [/i] the following succesion of operations (i) choosing some unmarked squares, any two not lying on the same row or column; (ii) marking them with 1; (iii) marking with 0 all the unmarked squares which lie on the same line and column with a square marked with the number 1 (even if the square has been marked with 1 on another move). We call a [i]game [/i]a succession of moves that end in the moment that we cannot make any more moves. What is the maximum possible sum of the numbers on the table at the end of a game?

1996 AMC 12/AHSME, 15

Two opposite sides of a rectangle are each divided into $n$ congruent segments, and the endpoints of one segment are joined to the center to form triangle $A$. The other sides are each divided into $m$ congruent segments, and the endpoints of one of these segments are joined to the center to form triangle $B$. [See figure for $n = 5, m = 7$.] What is the ratio of the area of triangle $A$ to the area of triangle $B$? [asy] int i; for(i=0; i<8; i=i+1) { dot((i,0)^^(i,5)); } for(i=1; i<5; i=i+1) { dot((0,i)^^(7,i)); } draw(origin--(7,0)--(7,5)--(0,5)--cycle, linewidth(0.8)); pair P=(3.5, 2.5); draw((0,4)--P--(0,3)^^(2,0)--P--(3,0)); label("$B$", (2.3,0), NE); label("$A$", (0,3.7), SE);[/asy] $\text{(A)} \ 1 \qquad \text{(B)} \ m/n \qquad \text{(C)} \ n/m \qquad \text{(D)} \ 2m/n \qquad \text{(E)} \ 2n/m$

2008 Romania National Olympiad, 2

A rectangle can be divided by parallel lines to its sides into 200 congruent squares, and also in 288 congruent squares. Prove that the rectangle can also be divided into 392 congruent squares.

2009 AMC 10, 18

Rectangle $ ABCD$ has $ AB\equal{}8$ and $ BC\equal{}6$. Point $ M$ is the midpoint of diagonal $ \overline{AC}$, and E is on $ \overline{AB}$ with $ \overline{ME}\perp\overline{AC}$. What is the area of $ \triangle AME$? $ \textbf{(A)}\ \frac{65}{8} \qquad \textbf{(B)}\ \frac{25}{3} \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ \frac{75}{8} \qquad \textbf{(E)}\ \frac{85}{8}$

2008 Princeton University Math Competition, B1

Tags: rectangle
If a rectangle’s length is increased by $30\%$ and its width is decreased by $30\%$, by what percentage does its area change? State whether the area increases or decreases.

2003 All-Russian Olympiad, 4

Find the greatest natural number $N$ such that, for any arrangement of the numbers $1, 2, \ldots, 400$ in a chessboard $20 \times 20$, there exist two numbers in the same row or column, which differ by at least $N.$

2008 Cuba MO, 8

Let $ABC$ an acute-angle triangle. Let $R$ be a rectangle with vertices in the edges of $ABC$. Let $O$ be the center of $R$. a) Find the locus of all the points $O$. b) Decide if there is a point that is the center of three of these rectangles.

2022 AMC 10, 16

The diagram below shows a rectangle with side lengths $4$ and $8$ and a square with side length $5$. Three vertices of the square lie on three different sides of the rectangle, as shown. What is the area of the region inside both the square and the rectangle? [asy] size(5cm); filldraw((4,0)--(8,3)--(8-3/4,4)--(1,4)--cycle,mediumgray); draw((0,0)--(8,0)--(8,4)--(0,4)--cycle,linewidth(1.1)); draw((1,0)--(1,4)--(4,0)--(8,3)--(5,7)--(1,4),linewidth(1.1)); label("$4$", (8,2), E); label("$8$", (4,0), S); label("$5$", (3,11/2), NW); draw((1,.35)--(1.35,.35)--(1.35,0),linewidth(.4)); draw((5,7)--(5+21/100,7-28/100)--(5-7/100,7-49/100)--(5-28/100,7-21/100)--cycle,linewidth(.4)); [/asy] $\textbf{(A) } 15\dfrac{1}{8} \qquad \textbf{(B) } 15\dfrac{3}{8} \qquad \textbf{(C) } 15\dfrac{1}{2} \qquad \textbf{(D) } 15\dfrac{5}{8} \qquad \textbf{(E) } 15\dfrac{7}{8}$

2006 AMC 12/AHSME, 15

Circles with centers $ O$ and $ P$ have radii 2 and 4, respectively, and are externally tangent. Points $ A$ and $ B$ are on the circle centered at $ O$, and points $ C$ and $ D$ are on the circle centered at $ P$, such that $ \overline{AD}$ and $ \overline{BC}$ are common external tangents to the circles. What is the area of hexagon $ AOBCPD$? [asy] unitsize(0.4 cm); defaultpen(linewidth(0.7) + fontsize(11)); pair A, B, C, D; pair[] O; O[1] = (6,0); O[2] = (12,0); A = (32/6,8*sqrt(2)/6); B = (32/6,-8*sqrt(2)/6); C = 2*B; D = 2*A; draw(Circle(O[1],2)); draw(Circle(O[2],4)); draw((0.7*A)--(1.2*D)); draw((0.7*B)--(1.2*C)); draw(O[1]--O[2]); draw(A--O[1]); draw(B--O[1]); draw(C--O[2]); draw(D--O[2]); label("$A$", A, NW); label("$B$", B, SW); label("$C$", C, SW); label("$D$", D, NW); dot("$O$", O[1], SE); dot("$P$", O[2], SE); label("$2$", (A + O[1])/2, E); label("$4$", (D + O[2])/2, E);[/asy] $ \textbf{(A) } 18\sqrt {3} \qquad \textbf{(B) } 24\sqrt {2} \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 24\sqrt {3} \qquad \textbf{(E) } 32\sqrt {2}$

May Olympiad L2 - geometry, 2008.2

Let $ABCD$ be a rectangle and $P$ be a point on the side$ AD$ such that $\angle BPC = 90^o$. The perpendicular from $A$ on $BP$ cuts $BP$ at $M$ and the perpendicular from $D$ on $CP$ cuts $CP$ in $N$. Show that the center of the rectangle lies in the $MN$ segment.

1987 AMC 8, 5

The area of the rectangular region is [asy] draw((0,0)--(4,0)--(4,2.2)--(0,2.2)--cycle,linewidth(.5 mm)); label(".22 m",(4,1.1),E); label(".4 m",(2,0),S); [/asy] $\text{(A)}\ \text{.088 m}^2 \qquad \text{(B)}\ \text{.62 m}^2 \qquad \text{(C)}\ \text{.88 m}^2 \qquad \text{(D)}\ \text{1.24 m}^2 \qquad \text{(E)}\ \text{4.22 m}^2$

2010 USAMO, 1

Let $AXYZB$ be a convex pentagon inscribed in a semicircle of diameter $AB$. Denote by $P$, $Q$, $R$, $S$ the feet of the perpendiculars from $Y$ onto lines $AX$, $BX$, $AZ$, $BZ$, respectively. Prove that the acute angle formed by lines $PQ$ and $RS$ is half the size of $\angle XOZ$, where $O$ is the midpoint of segment $AB$.

2008 AMC 12/AHSME, 25

Let $ ABCD$ be a trapezoid with $ AB\parallel{}CD$, $ AB\equal{}11$, $ BC\equal{}5$, $ CD\equal{}19$, and $ DA\equal{}7$. Bisectors of $ \angle A$ and $ \angle D$ meet at $ P$, and bisectors of $ \angle B$ and $ \angle C$ meet at $ Q$. What is the area of hexagon $ ABQCDP$? $ \textbf{(A)}\ 28\sqrt{3}\qquad \textbf{(B)}\ 30\sqrt{3}\qquad \textbf{(C)}\ 32\sqrt{3}\qquad \textbf{(D)}\ 35\sqrt{3}\qquad \textbf{(E)}\ 36\sqrt{3}$

1995 Brazil National Olympiad, 4

A regular tetrahedron has side $L$. What is the smallest $x$ such that the tetrahedron can be passed through a loop of twine of length $x$?

1969 IMO Longlists, 9

$(BUL 3)$ One hundred convex polygons are placed on a square with edge of length $38 cm.$ The area of each of the polygons is smaller than $\pi cm^2,$ and the perimeter of each of the polygons is smaller than $2\pi cm.$ Prove that there exists a disk with radius $1$ in the square that does not intersect any of the polygons.

2007 May Olympiad, 5

You have a paper pentagon, $ABCDE$, such that $AB = BC = 3$ cm, $CD = DE= 5$ cm, $EA = 4$ cm, $\angle ABC = 100^o$ ,$ \angle CDE = 80^o$. You have to divide the pentagon into four triangles, by three straight cuts, so that with the four triangles assemble a rectangle, without gaps or overlays. (The triangles can be rotated and / or turned around.)

2009 AMC 12/AHSME, 25

The set $ G$ is defined by the points $ (x,y)$ with integer coordinates, $ 3\le|x|\le7$, $ 3\le|y|\le7$. How many squares of side at least $ 6$ have their four vertices in $ G$? [asy]defaultpen(black+0.75bp+fontsize(8pt)); size(5cm); path p = scale(.15)*unitcircle; draw((-8,0)--(8.5,0),Arrow(HookHead,1mm)); draw((0,-8)--(0,8.5),Arrow(HookHead,1mm)); int i,j; for (i=-7;i<8;++i) { for (j=-7;j<8;++j) { if (((-7 <= i) && (i <= -3)) || ((3 <= i) && (i<= 7))) { if (((-7 <= j) && (j <= -3)) || ((3 <= j) && (j<= 7))) { fill(shift(i,j)*p,black); }}}} draw((-7,-.2)--(-7,.2),black+0.5bp); draw((-3,-.2)--(-3,.2),black+0.5bp); draw((3,-.2)--(3,.2),black+0.5bp); draw((7,-.2)--(7,.2),black+0.5bp); draw((-.2,-7)--(.2,-7),black+0.5bp); draw((-.2,-3)--(.2,-3),black+0.5bp); draw((-.2,3)--(.2,3),black+0.5bp); draw((-.2,7)--(.2,7),black+0.5bp); label("$-7$",(-7,0),S); label("$-3$",(-3,0),S); label("$3$",(3,0),S); label("$7$",(7,0),S); label("$-7$",(0,-7),W); label("$-3$",(0,-3),W); label("$3$",(0,3),W); label("$7$",(0,7),W);[/asy]$ \textbf{(A)}\ 125\qquad \textbf{(B)}\ 150\qquad \textbf{(C)}\ 175\qquad \textbf{(D)}\ 200\qquad \textbf{(E)}\ 225$

1988 National High School Mathematics League, 10

Lengths of two sides of a rectangle are $\sqrt2,1$. The rectangle rotates a round around one of its diagonal. Find the volume of the revolved body.