This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2007 Federal Competition For Advanced Students, Part 2, 3

The triangle $ ABC$ with the circumcircle $ k(U,r)$ is given. On the extension of the radii $ UA$ a point $ P$ is chosen. The reflection of the line $ PB$ on the line $ BA$ is called $ g$. Likewise the reflection of the line $ PC$ on the line $ CA$ is called $ h$. The intersection of $ g$ and $ h$ is called $ Q$. Find the geometric location of all possible intersections $ Q$, while $ P$ passes through the extension of the radii $ UA$.

KoMaL A Problems 2019/2020, A. 779

Two circles are given in the plane, $\Omega$ and inside it $\omega$. The center of $\omega$ is $I$. $P$ is a point moving on $\Omega$. The second intersection of the tangents from $P$ to $\omega$ and circle $\Omega$ are $Q$ and $R.$ The second intersection of circle $IQR$ and lines $PI$, $PQ$ and $PR$ are $J$, $S$ and $T,$ respectively. The reflection of point $J$ across line $ST$ is $K.$ Prove that lines $PK$ are concurrent.

2020 Vietnam National Olympiad, 6

Let a non-isosceles acute triangle ABC with tha attitude AD, BE, CF and the orthocenter H. DE, DF intersect (AD) at M, N respectively. $P\in AB,Q\in AC$ satisfy $NP\perp AB,MQ\perp AC$ a) Prove that EF is the tangent line of (APQ) b) Let T be the tangency point of (APQ) with EF,.DT $\cap$ MN={K}. L is the reflection of A in MN. Prove that MN, EF ,(DLK) pass through a piont

2020 Iran MO (2nd Round), P4

Let $\omega_1$ and $\omega_2$ be two circles that intersect at point $A$ and $B$. Define point $X$ on $\omega_1$ and point $Y$ on $\omega_2$ such that the line $XY$ is tangent to both circles and is closer to $B$. Define points $C$ and $D$ the reflection of $B$ WRT $X$ and $Y$ respectively. Prove that the angle $\angle{CAD}$ is less than $90^{\circ}$

2005 Vietnam National Olympiad, 2

Let $(O)$ be a fixed circle with the radius $R$. Let $A$ and $B$ be fixed points in $(O)$ such that $A,B,O$ are not collinear. Consider a variable point $C$ lying on $(O)$ ($C\neq A,B$). Construct two circles $(O_1),(O_2)$ passing through $A,B$ and tangent to $BC,AC$ at $C$, respectively. The circle $(O_1)$ intersects the circle $(O_2)$ in $D$ ($D\neq C$). Prove that: a) \[ CD\leq R \] b) The line $CD$ passes through a point independent of $C$ (i.e. there exists a fixed point on the line $CD$ when $C$ lies on $(O)$).

2002 IberoAmerican, 2

Given any set of $9$ points in the plane such that there is no $3$ of them collinear, show that for each point $P$ of the set, the number of triangles with its vertices on the other $8$ points and that contain $P$ on its interior is even.

2011 Middle European Mathematical Olympiad, 3

In a plane the circles $\mathcal K_1$ and $\mathcal K_2$ with centers $I_1$ and $I_2$, respectively, intersect in two points $A$ and $B$. Assume that $\angle I_1AI_2$ is obtuse. The tangent to $\mathcal K_1$ in $A$ intersects $\mathcal K_2$ again in $C$ and the tangent to $\mathcal K_2$ in $A$ intersects $\mathcal K_1$ again in $D$. Let $\mathcal K_3$ be the circumcircle of the triangle $BCD$. Let $E$ be the midpoint of that arc $CD$ of $\mathcal K_3$ that contains $B$. The lines $AC$ and $AD$ intersect $\mathcal K_3$ again in $K$ and $L$, respectively. Prove that the line $AE$ is perpendicular to $KL$.

2015 Iran Geometry Olympiad, 2

In acute-angled triangle $ABC$, $BH$ is the altitude of the vertex $B$. The points $D$ and $E$ are midpoints of $AB$ and $AC$ respectively. Suppose that $F$ be the reflection of $H$ with respect to $ED$. Prove that the line $BF$ passes through circumcenter of $ABC$. by Davood Vakili

2011 IMO, 6

Let $ABC$ be an acute triangle with circumcircle $\Gamma$. Let $\ell$ be a tangent line to $\Gamma$, and let $\ell_a, \ell_b$ and $\ell_c$ be the lines obtained by reflecting $\ell$ in the lines $BC$, $CA$ and $AB$, respectively. Show that the circumcircle of the triangle determined by the lines $\ell_a, \ell_b$ and $\ell_c$ is tangent to the circle $\Gamma$. [i]Proposed by Japan[/i]

2009 IMO, 2

Let $ ABC$ be a triangle with circumcentre $ O$. The points $ P$ and $ Q$ are interior points of the sides $ CA$ and $ AB$ respectively. Let $ K,L$ and $ M$ be the midpoints of the segments $ BP,CQ$ and $ PQ$. respectively, and let $ \Gamma$ be the circle passing through $ K,L$ and $ M$. Suppose that the line $ PQ$ is tangent to the circle $ \Gamma$. Prove that $ OP \equal{} OQ.$ [i]Proposed by Sergei Berlov, Russia [/i]

2005 Greece Team Selection Test, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2007 International Zhautykov Olympiad, 2

Let $ABCD$ be a convex quadrilateral, with $\angle BAC=\angle DAC$ and $M$ a point inside such that $\angle MBA=\angle MCD$ and $\angle MBC=\angle MDC$. Show that the angle $\angle ADC$ is equal to $\angle BMC$ or $\angle AMB$.

2010 Greece Team Selection Test, 3

Let $ABC$ be a triangle,$O$ its circumcenter and $R$ the radius of its circumcircle.Denote by $O_{1}$ the symmetric of $O$ with respect to $BC$,$O_{2}$ the symmetric of $O$ with respect to $AC$ and by $O_{3}$ the symmetric of $O$ with respect to $AB$. (a)Prove that the circles $C_{1}(O_{1},R)$, $C_{2}(O_{2},R)$, $C_{3}(O_{3},R)$ have a common point. (b)Denote by $T$ this point.Let $l$ be an arbitary line passing through $T$ which intersects $C_{1}$ at $L$, $C_{2}$ at $M$ and $C_{3}$ at $K$.From $K,L,M$ drop perpendiculars to $AB,BC,AC$ respectively.Prove that these perpendiculars pass through a point.

2013 Vietnam National Olympiad, 3

Let $ABC$ be a triangle such that $ABC$ isn't a isosceles triangle. $(I)$ is incircle of triangle touches $BC,CA,AB$ at $D,E,F$ respectively. The line through $E$ perpendicular to $BI$ cuts $(I)$ again at $K$. The line through $F$ perpendicular to $CI$ cuts $(I)$ again at $L$.$J$ is midpoint of $KL$. [b]a)[/b] Prove that $D,I,J$ collinear. [b]b)[/b] $B,C$ are fixed points,$A$ is moved point such that $\frac{AB}{AC}=k$ with $k$ is constant.$IE,IF$ cut $(I)$ again at $M,N$ respectively.$MN$ cuts $IB,IC$ at $P,Q$ respectively. Prove that bisector perpendicular of $PQ$ through a fixed point.

1997 AIME Problems, 13

Let $ S$ be the set of points in the Cartesian plane that satisfy \[ \Big|\big|{|x| \minus{} 2}\big| \minus{} 1\Big| \plus{} \Big|\big|{|y| \minus{} 2}\big| \minus{} 1\Big| \equal{} 1. \] If a model of $ S$ were built from wire of negligible thickness, then the total length of wire required would be $ a\sqrt {b},$ where $ a$ and $ b$ are positive integers and $ b$ is not divisible by the square of any prime number. Find $ a \plus{} b.$

1997 Putnam, 1

A rectangle, $HOMF$, has sides $HO=11$ and $OM=5$. A triangle $\Delta ABC$ has $H$ as orthocentre, $O$ as circumcentre, $M$ be the midpoint of $BC$, $F$ is the feet of altitude from $A$. What is the length of $BC$ ? [asy] unitsize(0.3 cm); pair F, H, M, O; F = (0,0); H = (0,5); O = (11,5); M = (11,0); draw(H--O--M--F--cycle); label("$F$", F, SW); label("$H$", H, NW); label("$M$", M, SE); label("$O$", O, NE); [/asy]

2004 Bulgaria Team Selection Test, 2

Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.

2011 Costa Rica - Final Round, 6

Let $ABC$ be a triangle. The incircle of $ABC$ touches $BC,AC,AB$ at $D,E,F$, respectively. Each pair of the incircles of triangles $AEF, BDF,CED$ has two pair of common external tangents, one of them being one of the sides of $ABC$. Show that the other three tangents divide triangle $DEF$ into three triangles and three parallelograms.

2014 Tuymaada Olympiad, 3

The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear. [i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]

2013 AMC 10, 16

A triangle with vertices $(6,5)$, $(8,-3)$, and $(9,1)$ is reflected about the line $x=8$ to create a second triangle. What is the area of the union of the two triangles? $\textbf{(A) }9\qquad \textbf{(B) }\dfrac{28}{3}\qquad \textbf{(C) }10\qquad \textbf{(D) }\dfrac{31}{3}\qquad \textbf{(E) }\dfrac{32}{3}\qquad$

2013 Moldova Team Selection Test, 3

Consider the triangle $\triangle ABC$ with $AB \not = AC$. Let point $O$ be the circumcenter of $\triangle ABC$. Let the angle bisector of $\angle BAC$ intersect $BC$ at point $D$. Let $E$ be the reflection of point $D$ across the midpoint of the segment $BC$. The lines perpendicular to $BC$ in points $D,E$ intersect the lines $AO,AD$ at the points $X,Y$ respectively. Prove that the quadrilateral $B,X,C,Y$ is cyclic.

Cono Sur Shortlist - geometry, 2020.G1.4

Let $ABC$ be an acute scalene triangle. $D$ and $E$ are variable points in the half-lines $AB$ and $AC$ (with origin at $A$) such that the symmetric of $A$ over $DE$ lies on $BC$. Let $P$ be the intersection of the circles with diameter $AD$ and $AE$. Find the locus of $P$ when varying the line segment $DE$.

2008 Harvard-MIT Mathematics Tournament, 10

Let $ ABC$ be an equilateral triangle with side length 2, and let $ \Gamma$ be a circle with radius $ \frac {1}{2}$ centered at the center of the equilateral triangle. Determine the length of the shortest path that starts somewhere on $ \Gamma$, visits all three sides of $ ABC$, and ends somewhere on $ \Gamma$ (not necessarily at the starting point). Express your answer in the form of $ \sqrt p \minus{} q$, where $ p$ and $ q$ are rational numbers written as reduced fractions.

2015 India Regional MathematicaI Olympiad, 1

Let \(ABC\) be a triangle. Let \(B'\) denote the reflection of \(b\) in the internal angle bisector \(l\) of \(\angle A\).Show that the circumcentre of the triangle \(CB'I\) lies on the line \(l\) where \(I\) is the incentre of \(ABC\).

1968 Czech and Slovak Olympiad III A, 3

Two segment $AB,CD$ of the same length are given in plane such that lines $AB,CD$ are not parallel. Consider a point $S$ with the following property: the image of segment $AB$ under point reflection with respect to $S$ is identical to the mirror-image of segment $CD$ with respect to some axis. Find the locus of all such points $S.$