This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2010 Serbia National Math Olympiad, 1

Let $O$ be the circumcenter of triangle $ABC$. A line through $O$ intersects the sides $CA$ and $CB$ at points $D$ and $E$ respectively, and meets the circumcircle of $ABO$ again at point $P \neq O$ inside the triangle. A point $Q$ on side $AB$ is such that $\frac{AQ}{QB}=\frac{DP}{PE}$. Prove that $\angle APQ = 2\angle CAP$. [i]Proposed by Dusan Djukic[/i]

2010 Contests, 4

Let $ABC$ be an acute angled triangle satisfying the conditions $AB>BC$ and $AC>BC$. Denote by $O$ and $H$ the circumcentre and orthocentre, respectively, of the triangle $ABC.$ Suppose that the circumcircle of the triangle $AHC$ intersects the line $AB$ at $M$ different from $A$, and the circumcircle of the triangle $AHB$ intersects the line $AC$ at $N$ different from $A.$ Prove that the circumcentre of the triangle $MNH$ lies on the line $OH$.

2008 Brazil National Olympiad, 1

Let $ ABCD$ be a cyclic quadrilateral and $ r$ and $ s$ the lines obtained reflecting $ AB$ with respect to the internal bisectors of $ \angle CAD$ and $ \angle CBD$, respectively. If $ P$ is the intersection of $ r$ and $ s$ and $ O$ is the center of the circumscribed circle of $ ABCD$, prove that $ OP$ is perpendicular to $ CD$.

2004 AMC 12/AHSME, 9

The point $ (\minus{}3, 2)$ is rotated $ 90^\circ$ clockwise around the origin to point $ B$. Point $ B$ is then reflected over the line $ y \equal{} x$ to point $ C$. What are the coordinates of $ C$? $ \textbf{(A)}\ ( \minus{} 3, \minus{} 2)\qquad \textbf{(B)}\ ( \minus{} 2, \minus{} 3)\qquad \textbf{(C)}\ (2, \minus{} 3)\qquad \textbf{(D)}\ (2,3)\qquad \textbf{(E)}\ (3,2)$

2002 India IMO Training Camp, 13

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

2009 USAMO, 5

Trapezoid $ ABCD$, with $ \overline{AB}\parallel{}\overline{CD}$, is inscribed in circle $ \omega$ and point $ G$ lies inside triangle $ BCD$. Rays $ AG$ and $ BG$ meet $ \omega$ again at points $ P$ and $ Q$, respectively. Let the line through $ G$ parallel to $ \overline{AB}$ intersects $ \overline{BD}$ and $ \overline{BC}$ at points $ R$ and $ S$, respectively. Prove that quadrilateral $ PQRS$ is cyclic if and only if $ \overline{BG}$ bisects $ \angle CBD$.

2007 Singapore Team Selection Test, 1

Two circles $ (O_1)$ and $ (O_2)$ touch externally at the point $C$ and internally at the points $A$ and $B$ respectively with another circle $(O)$. Suppose that the common tangent of $ (O_1)$ and $ (O_2)$ at $C$ meets $(O)$ at $P$ such that $PA=PB$. Prove that $PO$ is perpendicular to $AB$.

2006 Iran Team Selection Test, 3

Let $l,m$ be two parallel lines in the plane. Let $P$ be a fixed point between them. Let $E,F$ be variable points on $l,m$ such that the angle $EPF$ is fixed to a number like $\alpha$ where $0<\alpha<\frac{\pi}2$. (By angle $EPF$ we mean the directed angle) Show that there is another point (not $P$) such that it sees the segment $EF$ with a fixed angle too.

2014 India IMO Training Camp, 1

In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.

2007 China Girls Math Olympiad, 5

Point $D$ lies inside triangle $ABC$ such that $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Point $E$ is the midpoint of segment $BC$. Point $F$ lies on segment $AC$ with $AF = 2FC$. Prove that $DE \perp EF$.

2011 AIME Problems, 8

Let $z_1,z_2,z_3,\dots,z_{12}$ be the 12 zeroes of the polynomial $z^{12}-2^{36}$. For each $j$, let $w_j$ be one of $z_j$ or $i z_j$. Then the maximum possible value of the real part of $\displaystyle\sum_{j=1}^{12} w_j$ can be written as $m+\sqrt{n}$ where $m$ and $n$ are positive integers. Find $m+n$.

2007 Balkan MO, 1

Let $ABCD$ a convex quadrilateral with $AB=BC=CD$, with $AC$ not equal to $BD$ and $E$ be the intersection point of it's diagonals. Prove that $AE=DE$ if and only if $\angle BAD+\angle ADC = 120$.

2001 USAMO, 6

Each point in the plane is assigned a real number such that, for any triangle, the number at the center of its inscribed circle is equal to the arithmetic mean of the three numbers at its vertices. Prove that all points in the plane are assigned the same number.

2005 USA Team Selection Test, 5

Find all finite sets $S$ of points in the plane with the following property: for any three distinct points $A,B,$ and $C$ in $S,$ there is a fourth point $D$ in $S$ such that $A,B,C,$ and $D$ are the vertices of a parallelogram (in some order).

ICMC 5, 4

Let $p$ be a prime number. Find all subsets $S\subseteq\mathbb Z/p\mathbb Z$ such that 1. if $a,b\in S$, then $ab\in S$, and 2. there exists an $r\in S$ such that for all $a\in S$, we have $r-a\in S\cup\{0\}$. [i]Proposed by Harun Khan[/i]

2013 ISI Entrance Examination, 5

Let $AD$ be a diameter of a circle of radius $r,$ and let $B,C$ be points on the circle such that $AB=BC=\frac r2$ and $A\neq C.$ Find the ratio $\frac{CD}{r}.$

2007 Ukraine Team Selection Test, 9

Points $ A_{1}$, $ B_{1}$, $ C_{1}$ are chosen on the sides $ BC$, $ CA$, $ AB$ of a triangle $ ABC$ respectively. The circumcircles of triangles $ AB_{1}C_{1}$, $ BC_{1}A_{1}$, $ CA_{1}B_{1}$ intersect the circumcircle of triangle $ ABC$ again at points $ A_{2}$, $ B_{2}$, $ C_{2}$ respectively ($ A_{2}\neq A, B_{2}\neq B, C_{2}\neq C$). Points $ A_{3}$, $ B_{3}$, $ C_{3}$ are symmetric to $ A_{1}$, $ B_{1}$, $ C_{1}$ with respect to the midpoints of the sides $ BC$, $ CA$, $ AB$ respectively. Prove that the triangles $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar.

2013 India IMO Training Camp, 2

In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.

2016 Korea - Final Round, 1

In a acute triangle $\triangle ABC$, denote $D, E$ as the foot of the perpendicular from $B$ to $AC$ and $C$ to $AB$. Denote the reflection of $E$ with respect to $AC, BC$ as $S, T$. The circumcircle of $\triangle CST$ hits $AC$ at point $X (\not= C)$. Denote the circumcenter of $\triangle CST$ as $O$. Prove that $XO \perp DE$.

2021 Auckland Mathematical Olympiad, 2

Triangle $ABC$ is the right angled triangle with the vertex $C$ at the right angle. Let $P$ be the point of reflection of $C$ about $AB$. It is known that $P$ and two midpoints of two sides of $ABC$ lie on a line. Find the angles of the triangle.

2023 Regional Olympiad of Mexico West, 6

There are $2023$ guinea pigs placed in a circle, from which everyone except one of them, call it $M$, has a mirror that points towards one of the $2022$ other guinea pigs. $M$ has a lantern that will shoot a light beam towards one of the guinea pigs with a mirror and will reflect to the guinea pig that the mirror is pointing and will keep reflecting with every mirror it reaches. Isaías will re-direct some of the mirrors to point to some other of the $2023$ guinea pigs. In the worst case scenario, what is the least number of mirrors that need to be re-directed, such that the light beam hits $M$ no matter the starting point of the light beam?

2006 Flanders Math Olympiad, 2

Let $\triangle ABC$ be an equilateral triangle and let $P$ be a point on $\left[AB\right]$. $Q$ is the point on $BC$ such that $PQ$ is perpendicular to $AB$. $R$ is the point on $AC$ such that $QR$ is perpendicular to $BC$. And $S$ is the point on $AB$ such that $RS$ is perpendicular to $AC$. $Q'$ is the point on $BC$ such that $PQ'$ is perpendicular to $BC$. $R'$ is the point on $AC$ such that $Q'R'$ is perpendicular to $AC$. And $S'$ is the point on $AB$ such that $R'S'$ is perpendicular to $AB$. Determine $\frac{|PB|}{|AB|}$ if $S=S'$.

2012 NIMO Problems, 6

In $\triangle ABC$ with circumcenter $O$, $\measuredangle A = 45^\circ$. Denote by $X$ the second intersection of $\overrightarrow{AO}$ with the circumcircle of $\triangle BOC$. Compute the area of quadrilateral $ABXC$ if $BX = 8$ and $CX = 15$. [i]Proposed by Aaron Lin[/i]

1970 IMO Longlists, 40

Let ABC be a triangle with angles $\alpha, \beta, \gamma$ commensurable with $\pi$. Starting from a point $P$ interior to the triangle, a ball reflects on the sides of $ABC$, respecting the law of reflection that the angle of incidence is equal to the angle of reflection. Prove that, supposing that the ball never reaches any of the vertices $A,B,C$, the set of all directions in which the ball will move through time is finite. In other words, its path from the moment $0$ to infinity consists of segments parallel to a finite set of lines.

2014 USAMTS Problems, 3:

Let $P$ be a square pyramid whose base consists of the four vertices $(0, 0, 0), (3, 0, 0), (3, 3, 0)$, and $(0, 3, 0)$, and whose apex is the point $(1, 1, 3)$. Let $Q$ be a square pyramid whose base is the same as the base of $P$, and whose apex is the point $(2, 2, 3)$. Find the volume of the intersection of the interiors of $P$ and $Q$.