This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 264

2008 Swedish Mathematical Competition, 1

A rhombus is inscribed in a convex quadrilateral. The sides of the rhombus are parallel with the diagonals of the quadrilateral, which have the lengths $d_1$ and $d_2$. Calculate the length of side of the rhombus , expressed in terms of $d_1$ and $d_2$.

Kyiv City MO Juniors 2003+ geometry, 2013.8.5

Let $ABCD$ be a convex quadrilateral. Prove that the circles inscribed in the triangles $ABC$, $BCD$, $CDA$ and $DAB$ have a common point if and only if $ABCD$ is a rhombus.

2002 Tournament Of Towns, 5

Let $AA_1,BB_1,CC_1$ be the altitudes of acute $\Delta ABC$. Let $O_a,O_b,O_c$ be the incentres of $\Delta AB_1C_1,\Delta BC_1A_1,\Delta CA_1B_1$ respectively. Also let $T_a,T_b,T_c$ be the points of tangency of the incircle of $\Delta ABC$ with $BC,CA,AB$ respectively. Prove that $T_aO_cT_bO_aT_cO_b$ is an equilateral hexagon.

2013 Tuymaada Olympiad, 2

Points $X$ and $Y$ inside the rhombus $ABCD$ are such that $Y$ is inside the convex quadrilateral $BXDC$ and $2\angle XBY = 2\angle XDY = \angle ABC$. Prove that the lines $AX$ and $CY$ are parallel. [i]S. Berlov[/i]

Estonia Open Junior - geometry, 2011.1.3

Consider a parallelogram $ABCD$. a) Prove that if the incenter of the triangle $ABC$ is located on the diagonal $BD$, then the parallelogram $ABCD$ is a rhombus. b) Is the parallelogram $ABCD$ a rhombus whenever the circumcenter of the triangle $ABC$ is located on the diagonal $BD$?

1987 China National Olympiad, 2

We are given an equilateral triangle ABC with the length of its side equal to $1$. There are $n-1$ points on each side of the triangle $ABC$ that equally divide the side into $n$ segments. We draw all possible lines that pass through any two of all those $3(n-1)$ points such that they are parallel to one of three sides of triangle $ABC$. All such lines divide triangle $ABC$ into some lesser triangles whose vertices are called [i]nodes[/i]. We assign a real number for each [i]node[/i] such that the following conditions are satisfied: (I) real numbers $a,b,c$ are assigned to $A,B,C$ respectively; (II) for any rhombus that is consisted of two lesser triangles that share a common side, the sum of the numbers of vertices on its one diagonal is equal to that of vertices on the other diagonal. 1) Find the minimum distance between the [i]node[/i] with the maximal number to the [i]node[/i] with the minimal number; 2) Denote by $S$ the sum of the numbers of all [i]nodes[/i], find $S$.

2021 Taiwan TST Round 3, 6

Let $ ABCD $ be a rhombus with center $ O. $ $ P $ is a point lying on the side $ AB. $ Let $ I, $ $ J, $ and $ L $ be the incenters of triangles $ PCD, $ $ PAD, $ and $PBC, $ respectively. Let $ H $ and $ K $ be orthocenters of triangles $ PLB $ and $ PJA, $ respectively. Prove that $ OI \perp HK. $ [i]Proposed by buratinogigle[/i]

1989 IMO Shortlist, 32

The vertex $ A$ of the acute triangle $ ABC$ is equidistant from the circumcenter $ O$ and the orthocenter $ H.$ Determine all possible values for the measure of angle $ A.$

2005 Abels Math Contest (Norwegian MO), 3b

In the parallelogram $ABCD$, all sides are equal, and $\angle A = 60^o$. Let $F$ be a point on line $AD, H$ a point on line $DC$, and $G$ a point on diagonal $AC$ such that $DFGH$ is a parallelogram. Show that then $\vartriangle BHF$ is equilateral.

2007 Moldova Team Selection Test, 4

We are given $n$ distinct points in the plane. Consider the number $\tau(n)$ of segments of length 1 joining pairs of these points. Show that $\tau(n)\leq \frac{n^{2}}3$.

2022 AMC 10, 20

Let $ABCD$ be a rhombus with $\angle{ADC} = 46^{\circ}$. Let $E$ be the midpoint of $\overline{CD}$, and let $F$ be the point on $\overline{BE}$ such that $\overline{AF}$ is perpendicular to $\overline{BE}$. What is the degree measure of $\angle{BFC}$? $\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 111 \qquad \textbf{(C)}\ 112 \qquad \textbf{(D)}\ 113 \qquad \textbf{(E)}\ 114$

2009 Oral Moscow Geometry Olympiad, 1

The figure shows a parallelogram and the point $P$ of intersection of its diagonals is marked. Draw a straight line through $P$ so that it breaks the parallelogram into two parts, from which you can fold a rhombus. [img]https://1.bp.blogspot.com/-Df2tIBthcmI/X2ZwIx3R4vI/AAAAAAAAMhQ/8Zkxfq30H8MSCdc66tm33n6jt-QKfGMowCLcBGAsYHQ/s0/2009%2Boral%2Bmoscow%2Bj1.png[/img]

1979 IMO Shortlist, 1

Prove that in the Euclidean plane every regular polygon having an even number of sides can be dissected into lozenges. (A lozenge is a quadrilateral whose four sides are all of equal length).

1995 Romania Team Selection Test, 4

Let $ABCD$ be a convex quadrilateral. Suppose that similar isosceles triangles $APB, BQC, CRD, DSA$ with the bases on the sides of $ABCD$ are constructed in the exterior of the quadrilateral such that $PQRS$ is a rectangle but not a square. Show that $ABCD$ is a rhombus.

2010 AMC 8, 6

Which of the following has the greatest number of line of symmetry? $ \textbf{(A)}\ \text{ Equilateral Triangle}$ $\textbf{(B)}\ \text{Non-square rhombus} $ $\textbf{(C)}\ \text{Non-square rectangle}$ $\textbf{(D)}\ \text{Isosceles Triangle}$ $\textbf{(E)}\ \text{Square} $

1952 Moscow Mathematical Olympiad, 210

Prove that if all faces of a parallelepiped are equal parallelograms, they are rhombuses.

2012 Turkey Team Selection Test, 2

In an acute triangle $ABC,$ let $D$ be a point on the side $BC.$ Let $M_1, M_2, M_3, M_4, M_5$ be the midpoints of the line segments $AD, AB, AC, BD, CD,$ respectively and $O_1, O_2, O_3, O_4$ be the circumcenters of triangles $ABD, ACD, M_1M_2M_4, M_1M_3M_5,$ respectively. If $S$ and $T$ are midpoints of the line segments $AO_1$ and $AO_2,$ respectively, prove that $SO_3O_4T$ is an isosceles trapezoid.

2020 South Africa National Olympiad, 2

Tags: rhombus , geometry , square , area
Let $S$ be a square with sides of length $2$ and $R$ be a rhombus with sides of length $2$ and angles measuring $60^\circ$ and $120^\circ$. These quadrilaterals are arranged to have the same centre and the diagonals of the rhombus are parallel to the sides of the square. Calculate the area of the region on which the figures overlap.

III Soros Olympiad 1996 - 97 (Russia), 10.6

Tags: geometry , rhombus
There is a rhombus with acute angle $b$ and side $a$. Two parallel lines, the distance between which is equal to the height of the rhombus, intersect all four sides of the rhombus. What can be the sum of the perimeters of two triangles cut off from a rhombus by straight lines? (These two triangles lie outside the strip between parallel lines.)

2021 Saint Petersburg Mathematical Olympiad, 6

A line $\ell$ passes through vertex $C$ of the rhombus $ABCD$ and meets the extensions of $AB, AD$ at points $X,Y$. Lines $DX, BY$ meet $(AXY)$ for the second time at $P,Q$. Prove that the circumcircle of $\triangle PCQ$ is tangent to $\ell$ [i]A. Kuznetsov[/i]

2011 IberoAmerican, 1

Let $ABC$ be an acute-angled triangle, with $AC \neq BC$ and let $O$ be its circumcenter. Let $P$ and $Q$ be points such that $BOAP$ and $COPQ$ are parallelograms. Show that $Q$ is the orthocenter of $ABC$.

2010 Contests, 2

Each of two different lines parallel to the the axis $Ox$ have exactly two common points on the graph of the function $f(x)=x^3+ax^2+bx+c$. Let $\ell_1$ and $\ell_2$ be two lines parallel to $Ox$ axis which meet the graph of $f$ in points $K_1, K_2$ and $K_3, K_4$, respectively. Prove that the quadrilateral formed by $K_1, K_2, K_3$ and $ K_4$ is a rhombus if and only if its area is equal to $6$ units.

1998 IberoAmerican Olympiad For University Students, 4

Four circles of radius $1$ with centers $A,B,C,D$ are in the plane in such a way that each circle is tangent to two others. A fifth circle passes through the center of two of the circles and is tangent to the other two. Find the possible values of the area of the quadrilateral $ABCD$.

1965 AMC 12/AHSME, 12

Tags: geometry , rhombus
A rhombus is inscribed in triangle $ ABC$ in such a way that one of its vertices is $ A$ and two of its sides lie along $ AB$ and $ AC$. If $ \overline{AC} \equal{} 6$ inches, $ \overline{AB} \equal{} 12$ inches, and $ \overline{BC} \equal{} 8$ inches, the side of the rhombus, in inches, is: $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 3 \frac {1}{2} \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$

2009 Romanian Master of Mathematics, 3

Given four points $ A_1, A_2, A_3, A_4$ in the plane, no three collinear, such that \[ A_1A_2 \cdot A_3 A_4 \equal{} A_1 A_3 \cdot A_2 A_4 \equal{} A_1 A_4 \cdot A_2 A_3, \] denote by $ O_i$ the circumcenter of $ \triangle A_j A_k A_l$ with $ \{i,j,k,l\} \equal{} \{1,2,3,4\}.$ Assuming $ \forall i A_i \neq O_i ,$ prove that the four lines $ A_iO_i$ are concurrent or parallel. [i]Nikolai Ivanov Beluhov, Bulgaria[/i]