This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 333

1949-56 Chisinau City MO, 21

The sides of the triangle $ABC$ satisfy the relation $c^2 = a^2 + b^2$. Show that angle $C$ is right.

2016 Dutch BxMO TST, 3

Let $\vartriangle ABC$ be a right-angled triangle with $\angle A = 90^o$ and circumcircle $\Gamma$. The inscribed circle is tangent to $BC$ in point $D$. Let $E$ be the midpoint of the arc $AB$ of $\Gamma$ not containing $C$ and let $F$ be the midpoint of the arc $AC$ of $\Gamma$ not containing $B$. (a) Prove that $\vartriangle ABC \sim \vartriangle DEF$. (b) Prove that $EF$ goes through the points of tangency of the incircle to $AB$ and $AC$.

2015 Saudi Arabia JBMO TST, 3

A right triangle $ABC$ with $\angle C=90^o$ is inscribed in a circle. Suppose that $K$ is the midpoint of the arc $BC$ that does not contain $A$. Let $N$ be the midpoint of the segment $AC$, and $M$ be the intersection point of the ray $KN$ and the circle.The tangents to the circle drawn at $A$ and $C$ meet at $E$. prove that $\angle EMK = 90^o$

2008 Bulgarian Autumn Math Competition, Problem 11.2

On the sides $AB$ and $AC$ of the right $\triangle ABC$ ($\angle A=90^{\circ}$) are chosen points $C_{1}$ and $B_{1}$ respectively. Prove that if $M=CC_{1}\cap BB_{1}$ and $AC_{1}=AB_{1}=AM$, then $[AB_{1}MC_{1}]+[AB_{1}C_{1}]=[BMC]$.

1959 AMC 12/AHSME, 7

The sides of a right triangle are $a, a+d,$ and $a+2d$, with $a$ and $d$ both positive. The ratio of $a$ to $d$ is: $ \textbf{(A)}\ 1:3 \qquad\textbf{(B)}\ 1:4 \qquad\textbf{(C)}\ 2:1\qquad\textbf{(D)}\ 3:1\qquad\textbf{(E)}\ 3:4 $

1998 IMO Shortlist, 8

Let $ABC$ be a triangle such that $\angle A=90^{\circ }$ and $\angle B<\angle C$. The tangent at $A$ to the circumcircle $\omega$ of triangle $ABC$ meets the line $BC$ at $D$. Let $E$ be the reflection of $A$ in the line $BC$, let $X$ be the foot of the perpendicular from $A$ to $BE$, and let $Y$ be the midpoint of the segment $AX$. Let the line $BY$ intersect the circle $\omega$ again at $Z$. Prove that the line $BD$ is tangent to the circumcircle of triangle $ADZ$. [hide="comment"] [i]Edited by Orl.[/i] [/hide]

2013 Tournament of Towns, 2

Let $C$ be a right angle in triangle $ABC$. On legs $AC$ and$BC$ the squares $ACKL, BCMN$ are constructed outside of triangle. If $CE$ is an altitude of the triangle prove that $LEM$ is a right angle.

2010 Denmark MO - Mohr Contest, 1

Four right triangles, each with the sides $1$ and $2$, are assembled to a figure as shown. How large a fraction does the area of the small circle make up of that of the big one? [img]https://1.bp.blogspot.com/-XODK1XKCS0Q/XzXDtcA-xAI/AAAAAAAAMWA/zSLPpf3IcX0rgaRtOxm_F2begnVdUargACLcBGAsYHQ/s0/2010%2BMohr%2Bp1.png[/img]

2007 Thailand Mathematical Olympiad, 3

A triangle $\vartriangle ABC$ has $\angle B = 90^o$ . A circle is tangent to $AB$ at $B$ and also tangent to $AC$. Another circle is tangent to the first circle as well as the two sides $AB$ and $AC$. Suppose that $AB =\sqrt3$ and $BC = 3$. What is the radius of the second circle?

2022 Novosibirsk Oral Olympiad in Geometry, 6

Anton has an isosceles right triangle, which he wants to cut into $9$ triangular parts in the way shown in the picture. What is the largest number of the resulting $9$ parts that can be equilateral triangles? A more formal description of partitioning. Let triangle $ABC$ be given. We choose two points on its sides so that they go in the order $AC_1C_2BA_1A_2CB_1B_2$, and no two coincide. In addition, the segments $C_1A_2$, $A_1B_2$ and $B_1C_2$ must intersect at one point. Then the partition is given by segments $C_1A_2$, $A_1B_2$, $B_1C_2$, $A_1C_2$, $B_1A_2$ and $C_1B_2$. [img]https://cdn.artofproblemsolving.com/attachments/0/5/5dd914b987983216342e23460954d46755d351.png[/img]

2003 Denmark MO - Mohr Contest, 1

In a right-angled triangle, the sum $a + b$ of the sides enclosing the right angle equals $24$ while the length of the altitude $h_c$ on the hypotenuse $c$ is $7$. Determine the length of the hypotenuse.

2009 Postal Coaching, 1

Two circles $\Gamma_a$ and $\Gamma_b$ with their centres lying on the legs $BC$ and $CA$ of a right triangle, both touching the hypotenuse $AB$, and both passing through the vertex $C$ are given. Let the radii of these circles be denoted by $\gamma_a$ and $\gamma_b$. Find the greatest real number $p$ such that the inequality $\frac{1}{\gamma_a}+\frac{1}{\gamma_b}\ge p \left(\frac{1}{a}+\frac{1}{b}\right)$ ($BC = a,CA = b$) holds for all right triangles $ABC$.

2006 MOP Homework, 4

Let $ABC$ be a right triangle with$ \angle A = 90^o$. Point $D$ lies on side $BC$ such that $\angle BAD = \angle CAD$. Point $I_a$ is the excenter of the triangle opposite $A$. Prove that $\frac{AD}{DI_a } \le \sqrt{2} -1$

2020 Malaysia IMONST 1, 13

Given a right-angled triangle with perimeter $18$. The sum of the squares of the three side lengths is $128$. What is the area of the triangle?

2013 NZMOC Camp Selection Problems, 9

Let $ABC$ be a triangle with $\angle CAB > 45^o$ and $\angle CBA > 45^o$. Construct an isosceles right angled triangle $RAB$ with $AB$ as its hypotenuse and $R$ inside $ABC$. Also construct isosceles right angled triangles $ACQ$ and $BCP$ having $AC$ and $BC$ respectively as their hypotenuses and lying entirely outside $ABC$. Show that $CQRP$ is a parallelogram.

2007 Oral Moscow Geometry Olympiad, 2

An isosceles right-angled triangle $ABC$ is given. On the extensions of sides $AB$ and $AC$, behind vertices $B$ and $C$ equal segments $BK$ and $CL$ were laid. $E$ and F are the points of intersection of the segment $KL$ and the lines perpendicular to the $KC$ , passing through the points $B$ and $A$, respectively. Prove that $EF = FL$.

2021 Estonia Team Selection Test, 2

Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$. Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.

Denmark (Mohr) - geometry, 2005.3

The point $P$ lies inside $\vartriangle ABC$ so that $\vartriangle BPC$ is isosceles, and angle $P$ is a right angle. Furthermore both $\vartriangle BAN$ and $\vartriangle CAM$ are isosceles with a right angle at $A$, and both are outside $\vartriangle ABC$. Show that $\vartriangle MNP$ is isosceles and right-angled. [img]https://1.bp.blogspot.com/-i9twOChu774/XzcBLP-RIXI/AAAAAAAAMXA/n5TJCOJypeMVW28-9GDG4st5C47yhvTCgCLcBGAsYHQ/s0/2005%2BMohr%2Bp3.png[/img]

Ukrainian TYM Qualifying - geometry, 2010.15

On the sides of the triangle $ABC$ externally constructed right triangles $ABC_1$, $BCA_1$, $CAB_1$. Prove that the points of intersection of the medians of the triangles $ABC$ and $A_1B_1C_1$ coincide.

1950 Polish MO Finals, 5

Prove that if for angles $A,B,C$ of a triangle holds $$\sin^2 A+\sin^2 B +\sin^2 C=2$$ iff the triangle $ABC$ is right.

2019 Yasinsky Geometry Olympiad, p5

On the sides of the right triangle, outside are constructed regular nonagons, which are constructed on one of the catheti and on the hypotenuse, with areas equal to $1602$ $cm^2$ and $2019$ $cm^2$, respectively. What is the area of the nonagon that is constructed on the other cathetus of this triangle? (Vladislav Kirilyuk)

2001 Czech And Slovak Olympiad IIIA, 2

Given a triangle $PQX$ in the plane, with $PQ = 3, PX = 2.6$ and $QX = 3.8$. Construct a right-angled triangle $ABC$ such that the incircle of $\vartriangle ABC$ touches $AB$ at $P$ and $BC$ at $Q$, and point $X$ lies on the line $AC$.

2021 Sharygin Geometry Olympiad, 10-11.1

.Let $CH$ be an altitude of right-angled triangle $ABC$ ($\angle C = 90^o$), $HA_1$, $HB_1$ be the bisectors of angles $CHB$, $AHC$ respectively, and $E, F$ be the midpoints of $HB_1$ and $HA_1$ respectively. Prove that the lines $AE$ and $BF$ meet on the bisector of angle $ACB$.

2019 Durer Math Competition Finals, 2

Prove that if a triangle has integral side lengths and its circumradius is a prime number then the triangle is right-angled.

1989 Chile National Olympiad, 3

In a right triangle with legs $a$, $b$ and hypotenuse $c$, draw semicircles with diameters on the sides of the triangle as indicated in the figure. The purple areas have values $X,Y$ . Calculate $X + Y$. [img]https://cdn.artofproblemsolving.com/attachments/1/a/5086dc7172516b0a986ef1af192c15eba4d6fc.png[/img]