This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 567

2010 CHMMC Fall, 3

Andy has 2010 square tiles, each of which has a side length of one unit. He plans to arrange the tiles in an m x n rectangle, where mn = 2010. Compute the sum of the perimeters of all of the different possible rectangles he can make. Two rectangles are considered to be the same if one can be rotated to become the other, so, for instance, a 1 x 2010 rectangle is considered to be the same as a 2010 x 1 rectangle.

2012 AMC 12/AHSME, 15

A $3\times3$ square is partitioned into $9$ unit squares. Each unit square is painted either white or black with each color being equally likely, chosen independently and at random. The square is the rotated $90^\circ$ clockwise about its center, and every white square in a position formerly occupied by a black square is painted black. The colors of all other squares are left unchanged. What is the probability that the grid is now entirely black? $ \textbf{(A)}\ \dfrac{49}{512} \qquad\textbf{(B)}\ \dfrac{7}{64} \qquad\textbf{(C)}\ \dfrac{121}{1024} \qquad\textbf{(D)}\ \dfrac{81}{512} \qquad\textbf{(E)}\ \dfrac{9}{32} $

2009 Balkan MO Shortlist, G6

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

2011 Today's Calculation Of Integral, 755

Given mobile points $P(0,\ \sin \theta),\ Q(8\cos \theta,\ 0)\ \left(0\leq \theta \leq \frac{\pi}{2}\right)$ on the $x$-$y$ plane. Denote by $D$ the part in which line segment $PQ$ sweeps. Find the volume $V$ generated by a rotation of $D$ around the $x$-axis.

2008 AMC 8, 21

Jerry cuts a wedge from a $6$-cm cylinder of bologna as shown by the dashed curve. Which answer choice is closest to the volume of his wedge in cubic centimeters? [asy] defaultpen(linewidth(0.65)); real d=90-63.43494882; draw(ellipse((origin), 2, 4)); fill((0,4)--(0,-4)--(-8,-4)--(-8,4)--cycle, white); draw(ellipse((-4,0), 2, 4)); draw((0,4)--(-4,4)); draw((0,-4)--(-4,-4)); draw(shift(-2,0)*rotate(-d-5)*ellipse(origin, 1.82, 4.56), linetype("10 10")); draw((-4,4)--(-8,4), dashed); draw((-4,-4)--(-8,-4), dashed); draw((-4,4.3)--(-4,5)); draw((0,4.3)--(0,5)); draw((-7,4)--(-7,-4), Arrows(5)); draw((-4,4.7)--(0,4.7), Arrows(5)); label("$8$ cm", (-7,0), W); label("$6$ cm", (-2,4.7), N);[/asy] $\textbf{(A)} 48 \qquad \textbf{(B)} 75 \qquad \textbf{(C)}151\qquad \textbf{(D)}192 \qquad \textbf{(E)}603$

1992 China Team Selection Test, 1

A triangle $ABC$ is given in the plane with $AB = \sqrt{7},$ $BC = \sqrt{13}$ and $CA = \sqrt{19},$ circles are drawn with centers at $A,B$ and $C$ and radii $\frac{1}{3},$ $\frac{2}{3}$ and $1,$ respectively. Prove that there are points $A',B',C'$ on these three circles respectively such that triangle $ABC$ is congruent to triangle $A'B'C'.$

1987 National High School Mathematics League, 1

Tags: rotation , geometry
$\triangle ABC$ and $\triangle ADE$ $(\angle ABC=\angle ADE=\frac{\pi}{2})$ are two isosceles right triangle that are not congruent. Fix $\triangle ABC$, but rotate $\triangle ADE$ on the plane. Prove that there exists point $M\in BC$, satisfying that $\triangle BMD$ is an isosceles right triangle.

2003 Romania Team Selection Test, 2

Let $ABC$ be a triangle with $\angle BAC=60^\circ$. Consider a point $P$ inside the triangle having $PA=1$, $PB=2$ and $PC=3$. Find the maximum possible area of the triangle $ABC$.

2011 AIME Problems, 12

Nine delegates, three each from three different countries, randomly select chairs at a round table that seats nine people. Let the probability that each delegate sits next to at least one delegate from another country be $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2012 Today's Calculation Of Integral, 787

Take two points $A\ (-1,\ 0),\ B\ (1,\ 0)$ on the $xy$-plane. Let $F$ be the figure by which the whole points $P$ on the plane satisfies $\frac{\pi}{4}\leq \angle{APB}\leq \pi$ and the figure formed by $A,\ B$. Answer the following questions: (1) Illustrate $F$. (2) Find the volume of the solid generated by a rotation of $F$ around the $x$-axis.

2010 AIME Problems, 11

Define a [i]T-grid[/i] to be a $ 3\times3$ matrix which satisfies the following two properties: (1) Exactly five of the entries are $ 1$'s, and the remaining four entries are $ 0$'s. (2) Among the eight rows, columns, and long diagonals (the long diagonals are $ \{a_{13},a_{22},a_{31}\}$ and $ \{a_{11},a_{22},a_{33}\}$, no more than one of the eight has all three entries equal. Find the number of distinct T-grids.

2004 Romania Team Selection Test, 5

A circular disk is partitioned into $ 2n$ equal sectors by $ n$ straight lines through its center. Then, these $ 2n$ sectors are colored in such a way that exactly $ n$ of the sectors are colored in blue, and the other $ n$ sectors are colored in red. We number the red sectors with numbers from $ 1$ to $ n$ in counter-clockwise direction (starting at some of these red sectors), and then we number the blue sectors with numbers from $ 1$ to $ n$ in clockwise direction (starting at some of these blue sectors). Prove that one can find a half-disk which contains sectors numbered with all the numbers from $ 1$ to $ n$ (in some order). (In other words, prove that one can find $ n$ consecutive sectors which are numbered by all numbers $ 1$, $ 2$, ..., $ n$ in some order.) [hide="Problem 8 from CWMO 2007"]$ n$ white and $ n$ black balls are placed at random on the circumference of a circle.Starting from a certain white ball,number all white balls in a clockwise direction by $ 1,2,\dots,n$. Likewise number all black balls by $ 1,2,\dots,n$ in anti-clockwise direction starting from a certain black ball.Prove that there exists a chain of $ n$ balls whose collection of numbering forms the set $ \{1,2,3\dots,n\}$.[/hide]

2006 AMC 8, 17

Jeff rotates spinners $ P$, $ Q$ and $ R$ and adds the resulting numbers. What is the probability that his sum is an odd number? [asy]size(200); path circle=circle((0,0),2); path r=(0,0)--(0,2); draw(circle,linewidth(1)); draw(shift(5,0)*circle,linewidth(1)); draw(shift(10,0)*circle,linewidth(1)); draw(r,linewidth(1)); draw(rotate(120)*r,linewidth(1)); draw(rotate(240)*r,linewidth(1)); draw(shift(5,0)*r,linewidth(1)); draw(shift(5,0)*rotate(90)*r,linewidth(1)); draw(shift(5,0)*rotate(180)*r,linewidth(1)); draw(shift(5,0)*rotate(270)*r,linewidth(1)); draw(shift(10,0)*r,linewidth(1)); draw(shift(10,0)*rotate(60)*r,linewidth(1)); draw(shift(10,0)*rotate(120)*r,linewidth(1)); draw(shift(10,0)*rotate(180)*r,linewidth(1)); draw(shift(10,0)*rotate(240)*r,linewidth(1)); draw(shift(10,0)*rotate(300)*r,linewidth(1)); label("$P$", (-2,2)); label("$Q$", shift(5,0)*(-2,2)); label("$R$", shift(10,0)*(-2,2)); label("$1$", (-1,sqrt(2)/2)); label("$2$", (1,sqrt(2)/2)); label("$3$", (0,-1)); label("$2$", shift(5,0)*(-sqrt(2)/2,sqrt(2)/2)); label("$4$", shift(5,0)*(sqrt(2)/2,sqrt(2)/2)); label("$6$", shift(5,0)*(sqrt(2)/2,-sqrt(2)/2)); label("$8$", shift(5,0)*(-sqrt(2)/2,-sqrt(2)/2)); label("$1$", shift(10,0)*(-0.5,1)); label("$3$", shift(10,0)*(0.5,1)); label("$5$", shift(10,0)*(1,0)); label("$7$", shift(10,0)*(0.5,-1)); label("$9$", shift(10,0)*(-0.5,-1)); label("$11$", shift(10,0)*(-1,0));[/asy] $ \textbf{(A)}\ \dfrac{1}{4} \qquad \textbf{(B)}\ \dfrac{1}{3} \qquad \textbf{(C)}\ \dfrac{1}{2} \qquad \textbf{(D)}\ \dfrac{2}{3} \qquad \textbf{(E)}\ \dfrac{3}{4}$

1994 Irish Math Olympiad, 2

Let $ A,B,C$ be collinear points on the plane with $ B$ between $ A$ and $ C$. Equilateral triangles $ ABD,BCE,CAF$ are constructed with $ D,E$ on one side of the line $ AC$ and $ F$ on the other side. Prove that the centroids of the triangles are the vertices of an equilateral triangle, and that the centroid of this triangle lies on the line $ AC$.

2009 Mediterranean Mathematics Olympiad, 2

Let $ABC$ be a triangle with $90^\circ \ne \angle A \ne 135^\circ$. Let $D$ and $E$ be external points to the triangle $ABC$ such that $DAB$ and $EAC$ are isoscele triangles with right angles at $D$ and $E$. Let $F = BE \cap CD$, and let $M$ and $N$ be the midpoints of $BC$ and $DE$, respectively. Prove that, if three of the points $A$, $F$, $M$, $N$ are collinear, then all four are collinear.

2004 AMC 12/AHSME, 9

The point $ (\minus{}3, 2)$ is rotated $ 90^\circ$ clockwise around the origin to point $ B$. Point $ B$ is then reflected over the line $ y \equal{} x$ to point $ C$. What are the coordinates of $ C$? $ \textbf{(A)}\ ( \minus{} 3, \minus{} 2)\qquad \textbf{(B)}\ ( \minus{} 2, \minus{} 3)\qquad \textbf{(C)}\ (2, \minus{} 3)\qquad \textbf{(D)}\ (2,3)\qquad \textbf{(E)}\ (3,2)$

1989 Romania Team Selection Test, 2

Let $P$ be a point on a circle $C$ and let $\phi$ be a given angle incommensurable with $2\pi$. For each $n \in N, P_n$ denotes the image of $P$ under the rotation about the center $O$ of $C$ by the angle $\alpha_n = n \phi$. Prove that the set $M = \{P_n | n \ge 0\}$ is dense in $C$.

Indonesia MO Shortlist - geometry, g1.1

Given triangle $ ABC$. Points $ D,E,F$ outside triangle $ ABC$ are chosen such that triangles $ ABD$, $ BCE$, and $ CAF$ are equilateral triangles. Prove that cicumcircles of these three triangles are concurrent.

2005 Romania National Olympiad, 2

The base $A_{1}A_{2}\ldots A_{n}$ of the pyramid $VA_{1}A_{2}\ldots A_{n}$ is a regular polygon. Prove that if \[\angle VA_{1}A_{2}\equiv \angle VA_{2}A_{3}\equiv \cdots \equiv \angle VA_{n-1}A_{n}\equiv \angle VA_{n}A_{1},\] then the pyramid is regular.

2010 Iran MO (3rd Round), 3

[b]points in plane[/b] set $A$ containing $n$ points in plane is given. a $copy$ of $A$ is a set of points that is made by using transformation, rotation, homogeneity or their combination on elements of $A$. we want to put $n$ $copies$ of $A$ in plane, such that every two copies have exactly one point in common and every three of them have no common elements. a) prove that if no $4$ points of $A$ make a parallelogram, you can do this only using transformation. ($A$ doesn't have a parallelogram with angle $0$ and a parallelogram that it's two non-adjacent vertices are one!) b) prove that you can always do this by using a combination of all these things. time allowed for this question was 1 hour and 30 minutes

2005 AIME Problems, 9

Twenty seven unit cubes are painted orange on a set of four faces so that two non-painted faces share an edge. The $27$ cubes are randomly arranged to form a $3\times 3 \times 3$ cube. Given the probability of the entire surface area of the larger cube is orange is $\frac{p^a}{q^br^c},$ where $p$,$q$, and $r$ are distinct primes and $a$,$b$, and $c$ are positive integers, find $a+b+c+p+q+r$.

2010 Today's Calculation Of Integral, 667

Let $a>1,\ 0\leq x\leq \frac{\pi}{4}$. Find the volume of the solid generated by a rotation of the part bounded by two curves $y=\frac{\sqrt{2}\sin x}{\sqrt{\sin 2x+a}},\ y=\frac{1}{\sqrt{\sin 2x+a}}$ about the $x$-axis. [i]1993 Hiroshima Un iversity entrance exam/Science[/i]

2008 Indonesia MO, 1

Given triangle $ ABC$. Points $ D,E,F$ outside triangle $ ABC$ are chosen such that triangles $ ABD$, $ BCE$, and $ CAF$ are equilateral triangles. Prove that cicumcircles of these three triangles are concurrent.

1994 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 5

In how many ways can you color the six sides of a cube in black or white? (Do note that the cube is unchanged when rotated?) A. 7 B. 10 C. 20 D. 30 E. 36

2018 PUMaC Combinatorics B, 7

How many ways are there to color the $8$ regions of a three-set Venn Diagram with $3$ colors such that each color is used at least once? Two colorings are considered the same if one can be reached from the other by rotation and/or reflection.