Found problems: 321
2021 AMC 10 Spring, 21
A square piece of paper has side length $1$ and vertices $A,B,C,$ and $D$ in that order. As shown in the figure, the paper is folded so that vertex $C$ meets edge $\overline{AD}$ at point $C’$, and edge $\overline{BC}$ intersects edge $\overline{AB}$ at point $E$. Suppose that $C’D=\frac{1}{3}$. What is the perimeter of $\triangle AEC’$?
[asy]
//Diagram by Samrocksnature
pair A=(0,1);
pair CC=(0.666666666666,1);
pair D=(1,1);
pair F=(1,0.62);
pair C=(1,0);
pair B=(0,0);
pair G=(0,0.25);
pair H=(-0.13,0.41);
pair E=(0,0.5);
dot(A^^CC^^D^^C^^B^^E);
draw(E--A--D--F);
draw(G--B--C--F, dashed);
fill(E--CC--F--G--H--E--CC--cycle, gray);
draw(E--CC--F--G--H--E--CC);
label("A",A,NW);
label("B",B,SW);
label("C",C,SE);
label("D",D,NE);
label("E",E,NW);
label("C'",CC,N);
[/asy]
$\textbf{(A) }2 \qquad \textbf{(B) }1+\frac{2}{3}\sqrt{3} \qquad \textbf{(C) }\frac{13}{6} \qquad \textbf{(D) }1+\frac{3}{4}\sqrt{3} \qquad \textbf{(E) }\frac{7}{3}$
2002 Junior Balkan Team Selection Tests - Romania, 4
Let $ABCD$ be a parallelogram of center $O$. Points $M$ and $N$ are the midpoints of $BO$ and $CD$, respectively. Prove that if the triangles $ABC$ and $AMN$ are similar, then $ABCD$ is a square.
2011 Tournament of Towns, 3
Three pairwise intersecting rays are given. At some point in time not on every ray from its beginning a point begins to move with speed. It is known that these three points form a triangle at any time, and the center of the circumscribed circle of this the triangle also moves uniformly and on a straight line. Is it true, that all these triangles are similar to each other?
2014 Romania Team Selection Test, 1
Let $ABC$ be an isosceles triangle, $AB = AC$, and let $M$ and $N$ be points on the sides $BC$ and $CA$, respectively, such that $\angle BAM=\angle CNM$. The lines $AB$ and $MN$ meet at $P$. Show that the internal angle bisectors of the angles $BAM$ and $BPM$ meet at a point on the line $BC$.
2004 Germany Team Selection Test, 1
Let $ABC$ be an acute triangle, and let $M$ and $N$ be two points on the line $AC$ such that the vectors $MN$ and $AC$ are identical. Let $X$ be the orthogonal projection of $M$ on $BC$, and let $Y$ be the orthogonal projection of $N$ on $AB$. Finally, let $H$ be the orthocenter of triangle $ABC$.
Show that the points $B$, $X$, $H$, $Y$ lie on one circle.
2014 Taiwan TST Round 2, 6
Let $P$ be a point inside triangle $ABC$, and suppose lines $AP$, $BP$, $CP$ meet the circumcircle again at $T$, $S$, $R$ (here $T \neq A$, $S \neq B$, $R \neq C$). Let $U$ be any point in the interior of $PT$. A line through $U$ parallel to $AB$ meets $CR$ at $W$, and the line through $U$ parallel to $AC$ meets $BS$ again at $V$. Finally, the line through $B$ parallel to $CP$ and the line through $C$ parallel to $BP$ intersect at point $Q$. Given that $RS$ and $VW$ are parallel, prove that $\angle CAP = \angle BAQ$.
1981 IMO Shortlist, 17
Three circles of equal radius have a common point $O$ and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of the triangle are collinear with the point $O$.
2011 AMC 12/AHSME, 18
A pyramid has a square base with sides of length 1 and has lateral faces that are equilateral triangles. A cube is placed within the pyramid so that one face is on the base of the pyramid and its opposite face has all its edges on the lateral faces of the pyramid. What is the volume of this cube?
$ \textbf{(A)}\ 5\sqrt{2}-7 \qquad
\textbf{(B)}\ 7-4\sqrt{3} \qquad
\textbf{(C)}\ \frac{2\sqrt{2}}{27} \qquad
\textbf{(D)}\ \frac{\sqrt{2}}{9} \qquad
\textbf{(E)}\ \frac{\sqrt{3}}{9} $
2000 Estonia National Olympiad, 4
On the side $AC$ of the triangle $ABC$, choose any point $D$ different from the vertices $A$ and C. Let $O_1$ and $O_2$ be circumcenters the triangles $ABD$ and $CBD$, respectively. Prove that the triangles $O_1DO_2$ and $ABC$ are similar.
1980 AMC 12/AHSME, 23
Line segments drawn from the vertex opposite the hypotenuse of a right triangle to the points trisecting the hypotenuse have lengths $\sin x$ and $\cos x$, where $x$ is a real number such that $0<x<\frac{\pi}2$. The length of the hypotenuse is
$\text{(A)} \ \frac 43 \qquad \text{(B)} \ \frac 32 \qquad \text{(C)} \ \frac{3\sqrt{5}}{5} \qquad \text{(D)} \ \frac{2\sqrt{5}}{3} \qquad \text{(E)} \ \text{not uniquely determined}$
1951 Polish MO Finals, 6
Given a circle and a segment $ MN $. Find a point $ C $ on the circle such that the triangle $ ABC $, where $ A $ and $ B $ are the intersection points of the lines $ MC $ and $ NC $ with the circle, is similar to the triangle $ MNC $.
2013 Kosovo National Mathematical Olympiad, 5
A trapezium has parallel sides of length equal to $a$ and $b$ ($a <b$), and the distance between the parallel sides is the altitude $h$. The extensions of the non-parallel lines intersect at a point that is a vertex of two triangles that have as sides the parallel sides of the trapezium. Express the areas of the triangles as functions of $a,b$ and $h$.
2012 ITAMO, 1
On the sides of a triangle $ABC$ right angled at $A$ three points $D, E$ and $F$ (respectively $BC, AC$
and $AB$) are chosen so that the quadrilateral $AFDE$ is a square. If $x$ is the length of the side of the square, show that
\[\frac{1}{x}=\frac{1}{AB}+\frac{1}{AC}\]
2010 National Olympiad First Round, 7
A frog is at the center of a circular shaped island with radius $r$. The frog jumps $1/2$ meters at first. After the first jump, it turns right or left at exactly $90^\circ$, and it always jumps one half of its previous jump. After a finite number of jumps, what is the least $r$ that yields the frog can never fall into the water?
$ \textbf{(A)}\ \frac{\sqrt 5}{3}
\qquad\textbf{(B)}\ \frac{\sqrt {13}}{5}
\qquad\textbf{(C)}\ \frac{\sqrt {19}}{6}
\qquad\textbf{(D)}\ \frac{1}{\sqrt 2}
\qquad\textbf{(E)}\ \frac34
$
2006 Romania Team Selection Test, 1
Let $ABC$ and $AMN$ be two similar triangles with the same orientation, such that $AB=AC$, $AM=AN$ and having disjoint interiors. Let $O$ be the circumcenter of the triangle $MAB$. Prove that the points $O$, $C$, $N$, $A$ lie on the same circle if and only if the triangle $ABC$ is equilateral.
[i]Valentin Vornicu[/i]
2021 German National Olympiad, 4
Let $OFT$ and $NOT$ be two similar triangles (with the same orientation) and let $FANO$ be a parallelogram. Show that
\[\vert OF\vert \cdot \vert ON\vert=\vert OA\vert \cdot \vert OT\vert.\]
2018 Estonia Team Selection Test, 5
Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.
1984 Poland - Second Round, 2
We construct similar isosceles triangles on the sides of the triangle $ ABC $: triangle $ APB $ outside the triangle $ ABC $ ($ AP = PB $), triangle $ CQA $ outside the triangle $ ABC $ ($ CQ = QA $), triangle $ CRB $ inside the triangle $ ABC $ ($ CR = RB $). Prove that $ APRQ $ is a parallelogram or that the points $ A, P, R, Q $ lie on a straight line.
1949-56 Chisinau City MO, 24
Show that a line passing through the feet of two altitudes of an acute-angled triangle cuts off a similar triangle.
2008 Harvard-MIT Mathematics Tournament, 18
Let $ ABC$ be a right triangle with $ \angle A \equal{} 90^\circ$. Let $ D$ be the midpoint of $ AB$ and let $ E$ be a point on segment $ AC$ such that $ AD \equal{} AE$. Let $ BE$ meet $ CD$ at $ F$. If $ \angle BFC \equal{} 135^\circ$, determine $ BC / AB$.
2010 Indonesia TST, 4
Let $ ABC$ be a non-obtuse triangle with $ CH$ and $ CM$ are the altitude and median, respectively. The angle bisector of $ \angle BAC$ intersects $ CH$ and $ CM$ at $ P$ and $ Q$, respectively. Assume that \[ \angle ABP\equal{}\angle PBQ\equal{}\angle QBC,\]
(a) prove that $ ABC$ is a right-angled triangle, and
(b) calculate $ \dfrac{BP}{CH}$.
[i]Soewono, Bandung[/i]
2011 Romania Team Selection Test, 1
Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at $E$. The midpoints of $AB$ and $CD$ are $F$ and $G$ respectively, and $\ell$ is the line through $G$ parallel to $AB$. The feet of the perpendiculars from E onto the lines $\ell$ and $CD$ are $H$ and $K$, respectively. Prove that the lines $EF$ and $HK$ are perpendicular.
2016 Bulgaria EGMO TST, 2
Let $ABC$ be a right triangle with $\angle ACB = 90^{\circ}$ and centroid $G$. The circumcircle $k_1$ of triangle $AGC$ and the circumcircle $k_2$ of triangle $BGC$ intersect $AB$ at $P$ and $Q$, respectively. The perpendiculars from $P$ and $Q$ respectively to $AC$ and $BC$ intersect $k_1$ and $k_2$ at $X$ and $Y$. Determine the value of $\frac{CX \cdot CY}{AB^2}$.
2012 Kyoto University Entry Examination, 2
Given a regular tetrahedron $OABC$. Take points $P,\ Q,\ R$ on the sides $OA,\ OB,\ OC$ respectively. Note that $P,\ Q,\ R$ are different from the vertices of the tetrahedron $OABC$. If $\triangle{PQR}$ is an equilateral triangle, then prove that three sides $PQ,\ QR,\ RP$ are pararell to three sides $AB,\ BC,\ CA$ respectively.
30 points
2005 AMC 10, 23
Let $ \overline{AB}$ be a diameter of a circle and $ C$ be a point on $ \overline{AB}$ with $ 2 \cdot AC \equal{} BC$. Let $ D$ and $ E$ be points on the circle such that $ \overline{DC} \perp \overline{AB}$ and $ \overline{DE}$ is a second diameter. What is the ratio of the area of $ \triangle DCE$ to the area of $ \triangle ABD$?
[asy]unitsize(2.5cm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
dotfactor=3;
pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0);
pair D=dir(aCos(C.x)), E=(-D.x,-D.y);
draw(A--B--D--cycle);
draw(D--E--C);
draw(unitcircle,white);
drawline(D,C);
dot(O);
clip(unitcircle);
draw(unitcircle);
label("$E$",E,SSE);
label("$B$",B,E);
label("$A$",A,W);
label("$D$",D,NNW);
label("$C$",C,SW);
draw(rightanglemark(D,C,B,2));[/asy]$ \textbf{(A)} \ \frac {1}{6} \qquad \textbf{(B)} \ \frac {1}{4} \qquad \textbf{(C)}\ \frac {1}{3} \qquad \textbf{(D)}\ \frac {1}{2} \qquad \textbf{(E)}\ \frac {2}{3}$