This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 701

2007 Cono Sur Olympiad, 3

Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, $CF$ where $D$, $E$, $F$ lie on $BC$, $AC$, $AB$, respectively. Let $M$ be the midpoint of $BC$. The circumcircle of triangle $AEF$ cuts the line $AM$ at $A$ and $X$. The line $AM$ cuts the line $CF$ at $Y$. Let $Z$ be the point of intersection of $AD$ and $BX$. Show that the lines $YZ$ and $BC$ are parallel.

1982 Spain Mathematical Olympiad, 2

By composing a symmetry of axis $r$ with a right angle rotation around from a point $P$ that does not belong to the line, another movement $M$ results. Is $M$ an axis symmetry? Is there any line invariant through $M$?

1976 IMO Longlists, 15

Let $ABC$ and $A'B'C'$ be any two coplanar triangles. Let $L$ be a point such that $AL || BC, A'L || B'C'$ , and $M,N$ similarly defined. The line $BC$ meets $B'C'$ at $P$, and similarly defined are $Q$ and $R$. Prove that $PL, QM, RN$ are concurrent.

2012 National Olympiad First Round, 17

Let $D$ be a point inside $\triangle ABC$ such that $m(\widehat{BAD})=20^{\circ}$, $m(\widehat{DAC})=80^{\circ}$, $m(\widehat{ACD})=20^{\circ}$, and $m(\widehat{DCB})=20^{\circ}$. $m(\widehat{ABD})= ?$ $ \textbf{(A)}\ 5^{\circ} \qquad \textbf{(B)}\ 10^{\circ} \qquad \textbf{(C)}\ 15^{\circ} \qquad \textbf{(D)}\ 20^{\circ} \qquad \textbf{(E)}\ 25^{\circ}$

1956 AMC 12/AHSME, 29

The points of intersection of $ xy \equal{} 12$ and $ x^2 \plus{} y^2 \equal{} 25$ are joined in succession. The resulting figure is: $ \textbf{(A)}\ \text{a straight line} \qquad\textbf{(B)}\ \text{an equilateral triangle} \qquad\textbf{(C)}\ \text{a parallelogram}$ $ \textbf{(D)}\ \text{a rectangle} \qquad\textbf{(E)}\ \text{a square}$

2003 Polish MO Finals, 1

In an acute-angled triangle $ABC, CD$ is the altitude. A line through the midpoint $M$ of side $AB$ meets the rays $CA$ and $CB$ at $K$ and $L$ respectively such that $CK = CL.$ Point $S$ is the circumcenter of the triangle $CKL.$ Prove that $SD = SM.$

1978 IMO Longlists, 4

Two identically oriented equilateral triangles, $ABC$ with center $S$ and $A'B'C$, are given in the plane. We also have $A' \neq S$ and $B' \neq S$. If $M$ is the midpoint of $A'B$ and $N$ the midpoint of $AB'$, prove that the triangles $SB'M$ and $SA'N$ are similar.

2006 South East Mathematical Olympiad, 1

[size=130]In $\triangle ABC$, $\angle A=60^\circ$. $\odot I$ is the incircle of $\triangle ABC$. $\odot I$ is tangent to sides $AB$, $AC$ at $D$, $E$, respectively. Line $DE$ intersects line $BI$ and $CI$ at $F$, $G$ respectively. Prove that [/size]$FG=\frac{BC}{2}$.

2005 AMC 12/AHSME, 7

Square $ EFGH$ is inside the square $ ABCD$ so that each side of $ EFGH$ can be extended to pass through a vertex of $ ABCD$. Square $ ABCD$ has side length $ \sqrt {50}$ and $ BE \equal{} 1$. What is the area of the inner square $ EFGH$? [asy]unitsize(4cm); defaultpen(linewidth(.8pt)+fontsize(10pt)); pair D=(0,0), C=(1,0), B=(1,1), A=(0,1); pair F=intersectionpoints(Circle(D,2/sqrt(5)),Circle(A,1))[0]; pair G=foot(A,D,F), H=foot(B,A,G), E=foot(C,B,H); draw(A--B--C--D--cycle); draw(D--F); draw(C--E); draw(B--H); draw(A--G); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$E$",E,NNW); label("$F$",F,ENE); label("$G$",G,SSE); label("$H$",H,WSW);[/asy]$ \textbf{(A)}\ 25\qquad \textbf{(B)}\ 32\qquad \textbf{(C)}\ 36\qquad \textbf{(D)}\ 40\qquad \textbf{(E)}\ 42$

2019 Peru EGMO TST, 6

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

2007 France Team Selection Test, 2

Let $a,b,c,d$ be positive reals such taht $a+b+c+d=1$. Prove that: \[6(a^{3}+b^{3}+c^{3}+d^{3})\geq a^{2}+b^{2}+c^{2}+d^{2}+\frac{1}{8}.\]

1991 Iran MO (2nd round), 3

Three groups $A, B$ and $C$ of mathematicians from different countries have invited to a ceremony. We have formed meetings such that three mathematicians participate in every meeting and there is exactly one mathematician from each group in every meeting. Also every two mathematicians have participated in exactly one meeting with each other. [b](a)[/b] Prove that if this is possible, then number of mathematicians of the groups is equal. [b](b)[/b] Prove that if there exist $3$ mathematicians in each group, then that work is possible. [b](c)[/b] Prove that if number mathematicians of the groups be equal, then that work is possible.

2013 China Team Selection Test, 1

For a positive integer $N>1$ with unique factorization $N=p_1^{\alpha_1}p_2^{\alpha_2}\dotsb p_k^{\alpha_k}$, we define \[\Omega(N)=\alpha_1+\alpha_2+\dotsb+\alpha_k.\] Let $a_1,a_2,\dotsc, a_n$ be positive integers and $p(x)=(x+a_1)(x+a_2)\dotsb (x+a_n)$ such that for all positive integers $k$, $\Omega(P(k))$ is even. Show that $n$ is an even number.

2012 Today's Calculation Of Integral, 793

Find the area of the figure bounded by two curves $y=x^4,\ y=x^2+2$.

2009 IMO Shortlist, 3

Let $ABC$ be a triangle. The incircle of $ABC$ touches the sides $AB$ and $AC$ at the points $Z$ and $Y$, respectively. Let $G$ be the point where the lines $BY$ and $CZ$ meet, and let $R$ and $S$ be points such that the two quadrilaterals $BCYR$ and $BCSZ$ are parallelogram. Prove that $GR=GS$. [i]Proposed by Hossein Karke Abadi, Iran[/i]

2013 China Girls Math Olympiad, 3

In a group of $m$ girls and $n$ boys, any two persons either know each other or do not know each other. For any two boys and any two girls, there are at least one boy and one girl among them,who do not know each other. Prove that the number of unordered pairs of (boy, girl) who know each other does not exceed $m+\frac{n(n-1)}{2}$.

2007 Sharygin Geometry Olympiad, 4

A quadrilateral A$BCD$ is inscribed into a circle with center $O$. Points $C', D'$ are the reflections of the orthocenters of triangles $ABD$ and $ABC$ at point $O$. Lines $BD$ and $BD'$ are symmetric with respect to the bisector of angle $ABC$. Prove that lines $AC$ and $AC'$ are symmetric with respect to the bisector of angle $DAB$.

2013 AMC 12/AHSME, 20

Let $S$ be the set $\{1,2,3,...,19\}$. For $a,b \in S$, define $a \succ b$ to mean that either $0 < a - b \leq 9$ or $b - a > 9$. How many ordered triples $(x,y,z)$ of elements of $S$ have the property that $x \succ y$, $y \succ z$, and $z \succ x$? $ \textbf{(A)} \ 810 \qquad \textbf{(B)} \ 855 \qquad \textbf{(C)} \ 900 \qquad \textbf{(D)} \ 950 \qquad \textbf{(E)} \ 988$

2013 All-Russian Olympiad, 3

The incircle of triangle $ ABC $ has centre $I$ and touches the sides $ BC $, $ CA $, $ AB $ at points $ A_1 $, $ B_1 $, $ C_1 $, respectively. Let $ I_a $, $ I_b $, $ I_c $ be excentres of triangle $ ABC $, touching the sides $ BC $, $ CA $, $ AB $ respectively. The segments $ I_aB_1 $ and $ I_bA_1 $ intersect at $ C_2 $. Similarly, segments $ I_bC_1 $ and $ I_cB_1 $ intersect at $ A_2 $, and the segments $ I_cA_1 $ and $ I_aC_1 $ at $ B_2 $. Prove that $ I $ is the center of the circumcircle of the triangle $ A_2B_2C_2 $. [i]L. Emelyanov, A. Polyansky[/i]

2003 China Team Selection Test, 2

Denote by $\left(ABC\right)$ the circumcircle of a triangle $ABC$. Let $ABC$ be an isosceles right-angled triangle with $AB=AC=1$ and $\measuredangle CAB=90^{\circ}$. Let $D$ be the midpoint of the side $BC$, and let $E$ and $F$ be two points on the side $BC$. Let $M$ be the point of intersection of the circles $\left(ADE\right)$ and $\left(ABF\right)$ (apart from $A$). Let $N$ be the point of intersection of the line $AF$ and the circle $\left(ACE\right)$ (apart from $A$). Let $P$ be the point of intersection of the line $AD$ and the circle $\left(AMN\right)$. Find the length of $AP$.

2005 Indonesia MO, 6

Find all triples $ (x,y,z)$ of integers which satisfy $ x(y \plus{} z) \equal{} y^2 \plus{} z^2 \minus{} 2$ $ y(z \plus{} x) \equal{} z^2 \plus{} x^2 \minus{} 2$ $ z(x \plus{} y) \equal{} x^2 \plus{} y^2 \minus{} 2$.

2005 JBMO Shortlist, 6

Let $C_1,C_2$ be two circles intersecting at points $A,P$ with centers $O,K$ respectively. Let $B,C$ be the symmetric of $A$ wrt $O,K$ in circles $C_1,C_2 $ respectively. A random line passing through $A$ intersects circles $C_1,C_2$ at $D,E$ respectively. Prove that the center of circumcircle of triangle $DEP$ lies on the circumcircle of triangle $OKP$.

PEN H Problems, 22

Find all integers $a,b,c,x,y,z$ such that \[a+b+c=xyz, \; x+y+z=abc, \; a \ge b \ge c \ge 1, \; x \ge y \ge z \ge 1.\]

2011 AMC 10, 22

Each vertex of convex pentagon $ABCDE$ is to be assigned a color. There are $6$ colors to choose from, and the ends of each diagonal must have different colors. How many different colorings are possible? $ \textbf{(A)}\ 2520\qquad\textbf{(B)}\ 2880\qquad\textbf{(C)}\ 3120\qquad\textbf{(D)}\ 3250\qquad\textbf{(E)}\ 3750 $

2012 IberoAmerican, 2

Let $ABC$ be a triangle, $P$ and $Q$ the intersections of the parallel line to $BC$ that passes through $A$ with the external angle bisectors of angles $B$ and $C$, respectively. The perpendicular to $BP$ at $P$ and the perpendicular to $CQ$ at $Q$ meet at $R$. Let $I$ be the incenter of $ABC$. Show that $AI = AR$.