Found problems: 701
2008 Iran Team Selection Test, 12
In the acute-angled triangle $ ABC$, $ D$ is the intersection of the altitude passing through $ A$ with $ BC$ and $ I_a$ is the excenter of the triangle with respect to $ A$. $ K$ is a point on the extension of $ AB$ from $ B$, for which $ \angle AKI_a\equal{}90^\circ\plus{}\frac 34\angle C$. $ I_aK$ intersects the extension of $ AD$ at $ L$. Prove that $ DI_a$ bisects the angle $ \angle AI_aB$ iff $ AL\equal{}2R$. ($ R$ is the circumradius of $ ABC$)
1982 AMC 12/AHSME, 29
Let $ x$,$ y$, and $ z$ be three positive real numbers whose sum is $ 1$. If no one of these numbers is more than twice any other, then the minimum possible value of the product $ xyz$ is
$ \textbf{(A)}\ \frac{1}{32}\qquad
\textbf{(B)}\ \frac{1}{36}\qquad
\textbf{(C)}\ \frac{4}{125}\qquad
\textbf{(D)}\ \frac{1}{127}\qquad
\textbf{(E)}\ \text{none of these}$
2011 AIME Problems, 13
Point $P$ lies on the diagonal $AC$ of square $ABCD$ with $AP>CP$. Let $O_1$ and $O_2$ be the circumcenters of triangles $ABP$ and $CDP$ respectively. Given that $AB=12$ and $\angle O_1 P O_2 = 120^\circ$, then $AP=\sqrt{a}+\sqrt{b}$ where $a$ and $b$ are positive integers. Find $a+b$.
1994 AIME Problems, 14
A beam of light strikes $\overline{BC}$ at point $C$ with angle of incidence $\alpha=19.94^\circ$ and reflects with an equal angle of reflection as shown. The light beam continues its path, reflecting off line segments $\overline{AB}$ and $\overline{BC}$ according to the rule: angle of incidence equals angle of reflection. Given that $\beta=\alpha/10=1.994^\circ$ and $AB=AC,$ determine the number of times the light beam will bounce off the two line segments. Include the first reflection at $C$ in your count.
[asy]
size(250);defaultpen(linewidth(0.7));
real alpha=24, beta=32;
pair B=origin, C=(1,0), A=dir(beta), D=C+0.5*dir(alpha);
pair EE=2*dir(180-alpha), E=intersectionpoint(C--EE, A--B);
pair EEE=reflect(B,A)*EE, EEEE=reflect(C,B)*EEE, F=intersectionpoint(E--EEE, B--C), G=intersectionpoint(F--EEEE, A--B);
draw((1.4,0)--B--1.4*dir(beta));
draw(D--C, linetype("4 4"),EndArrow(5));
draw(C--E, linetype("4 4"),EndArrow(5));
draw(E--F, linetype("4 4"),EndArrow(5));
draw(F--G, linetype("4 4"),EndArrow(5));
markscalefactor=0.01;
draw(anglemark(C,B,A));
draw(anglemark((1.4,0), C,D));
label("$\beta$", 0.07*dir(beta/2), dir(beta/2), fontsize(10));
label("$\alpha$", C+0.07*dir(alpha/2), dir(alpha/2), fontsize(10));
label("$A$", A, dir(90)*dir(A));
label("$B$", B, dir(beta/2+180));
label("$C$", C, S);[/asy]
2021 China Team Selection Test, 5
Find the smallest real $\alpha$, such that for any convex polygon $P$ with area $1$, there exist a point $M$ in the plane, such that the area of convex hull of $P\cup Q$ is at most $\alpha$, where $Q$ denotes the image of $P$ under central symmetry with respect to $M$.
2019 Serbia National Math Olympiad, 4
For a $\triangle ABC$ , let $A_1$ be the symmetric point of the intersection of angle bisector of $\angle BAC$ and $BC$ , where center of the symmetry is the midpoint of side $BC$, In the same way we define $B_1 $ ( on $AC$ ) and $C_1$ (on $AB$). Intersection of circumcircle of $\triangle A_1B_1C_1$ and line $AB$ is the set $\{Z,C_1 \}$, with $BC$ is the set $\{X,A_1\}$ and with $CA$ is the set $\{Y,B_1\}$. If the perpendicular lines from $X,Y,Z$ on $BC,CA$ and $ AB$ , respectively are concurrent , prove that $\triangle ABC$ is isosceles.
1982 AMC 12/AHSME, 25
The adjacent map is part of a city: the small rectangles are rocks, and the paths in between are streets. Each morning, a student walks from intersection A to intersection B, always walking along streets shown, and always going east or south. For variety, at each intersection where he has a choice, he chooses with probability $\frac{1}{2}$ whether to go east or south. Find the probability that through any given morning, he goes through $C$.
[asy]
defaultpen(linewidth(0.7)+fontsize(8));
size(250);
path p=origin--(5,0)--(5,3)--(0,3)--cycle;
path q=(5,19)--(6,19)--(6,20)--(5,20)--cycle;
int i,j;
for(i=0; i<5; i=i+1) {
for(j=0; j<6; j=j+1) {
draw(shift(6*i, 4*j)*p);
}}
clip((4,2)--(25,2)--(25,21)--(4,21)--cycle);
fill(q^^shift(18,-16)*q^^shift(18,-12)*q, black);
label("A", (6,19), SE);
label("B", (23,4), NW);
label("C", (23,8), NW);
draw((26,11.5)--(30,11.5), Arrows(5));
draw((28,9.5)--(28,13.5), Arrows(5));
label("N", (28,13.5), N);
label("W", (26,11.5), W);
label("E", (30,11.5), E);
label("S", (28,9.5), S);[/asy]
$\textbf {(A) } \frac{11}{32} \qquad \textbf {(B) } \frac 12 \qquad \textbf {(C) } \frac 47 \qquad \textbf {(D) } \frac{21}{32} \qquad \textbf {(E) } \frac 34$
MathLinks Contest 7th, 5.3
If $ a\geq b\geq c\geq d > 0$ such that $ abcd\equal{}1$, then prove that \[ \frac 1{1\plus{}a} \plus{} \frac 1{1\plus{}b} \plus{} \frac 1{1\plus{}c} \geq \frac {3}{1\plus{}\sqrt[3]{abc}}.\]
MathLinks Contest 7th, 1.1
Given is an acute triangle $ ABC$ and the points $ A_1,B_1,C_1$, that are the feet of its altitudes from $ A,B,C$ respectively. A circle passes through $ A_1$ and $ B_1$ and touches the smaller arc $ AB$ of the circumcircle of $ ABC$ in point $ C_2$. Points $ A_2$ and $ B_2$ are defined analogously.
Prove that the lines $ A_1A_2$, $ B_1B_2$, $ C_1C_2$ have a common point, which lies on the Euler line of $ ABC$.
1986 AIME Problems, 9
In $\triangle ABC$, $AB= 425$, $BC=450$, and $AC=510$. An interior point $P$ is then drawn, and segments are drawn through $P$ parallel to the sides of the triangle. If these three segments are of an equal length $d$, find $d$.
2010 Princeton University Math Competition, 8
The expression $\sin2^\circ\sin4^\circ\sin6^\circ\cdots\sin90^\circ$ is equal to $p\sqrt{5}/2^{50}$, where $p$ is an integer. Find $p$.
1970 Dutch Mathematical Olympiad, 3
The points $P,Q,R$ and $A,B,C,D$ lie on a circle (clockwise) such that $\vartriangle PQR$ is equilateral and $ABCD$ is a square. The points $A$ and $P$ coincide. Prove that the symmetric of $B$ and $D$ wrt $PQ$ and $PR$ respectively lie on the sidelines of the symmetric square wrt $QR$.
2005 AMC 8, 3
What is the minimum number of small squares that must be colored black so that a line of symmetry lies on the diagonal $ \overline{BD}$ of square $ ABCD$?
[asy]defaultpen(linewidth(1));
for ( int x = 0; x < 5; ++x )
{
draw((0,x)--(4,x));
draw((x,0)--(x,4));
}
fill((1,0)--(2,0)--(2,1)--(1,1)--cycle);
fill((0,3)--(1,3)--(1,4)--(0,4)--cycle);
fill((2,3)--(4,3)--(4,4)--(2,4)--cycle);
fill((3,1)--(4,1)--(4,2)--(3,2)--cycle);
label("$A$", (0, 4), NW);
label("$B$", (4, 4), NE);
label("$C$", (4, 0), SE);
label("$D$", (0, 0), SW);[/asy]
$ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 $
1999 Iran MO (2nd round), 2
$ABC$ is a triangle with $\angle{B}>45^{\circ}$ , $\angle{C}>45^{\circ}$. We draw the isosceles triangles $CAM,BAN$ on the sides $AC,AB$ and outside the triangle, respectively, such that $\angle{CAM}=\angle{BAN}=90^{\circ}$. And we draw isosceles triangle $BPC$ on the side $BC$ and inside the triangle such that $\angle{BPC}=90^{\circ}$. Prove that $\Delta{MPN}$ is an isosceles triangle, too, and $\angle{MPN}=90^{\circ}$.
2005 Harvard-MIT Mathematics Tournament, 1
How many real numbers $x$ are solutions to the following equation? \[ |x-1| = |x-2| + |x-3| \]
1987 AIME Problems, 7
Let $[r,s]$ denote the least common multiple of positive integers $r$ and $s$. Find the number of ordered triples $(a,b,c)$ of positive integers for which $[a,b] = 1000$, $[b,c] = 2000$, and $[c,a] = 2000$
2000 Italy TST, 2
Let $ ABC$ be an isosceles right triangle and $M$ be the midpoint of its hypotenuse $AB$. Points $D$ and $E$ are taken on the legs $AC$ and $BC$ respectively such that $AD=2DC$ and $BE=2EC$. Lines $AE$ and $DM$ intersect at $F$. Show that $FC$ bisects the $\angle DFE$.
1969 Polish MO Finals, 3
Prove that an octagon, whose all angles are equal and all sides have rational length, has a center of symmetry.
2006 Junior Balkan MO, 4
Consider a $2n \times 2n$ board. From the $i$th line we remove the central $2(i-1)$ unit squares. What is the maximal number of rectangles $2 \times 1$ and $1 \times 2$ that can be placed on the obtained figure without overlapping or getting outside the board?
1975 Chisinau City MO, 110
Prove that any centrally symmetric convex octagon has a diagonal passing through the center of symmetry that is not parallel to any of its sides.
2011 Indonesia MO, 4
An island has $10$ cities, where some of the possible pairs of cities are connected by roads. A [i]tour route[/i] is a route starting from a city, passing exactly eight out of the other nine cities exactly once each, and returning to the starting city. (In other words, it is a loop that passes only nine cities instead of all ten cities.) For each city, there exists a tour route that doesn't pass the given city. Find the minimum number of roads on the island.
2011 IMO Shortlist, 6
Let $ABC$ be a triangle with $AB=AC$ and let $D$ be the midpoint of $AC$. The angle bisector of $\angle BAC$ intersects the circle through $D,B$ and $C$ at the point $E$ inside the triangle $ABC$. The line $BD$ intersects the circle through $A,E$ and $B$ in two points $B$ and $F$. The lines $AF$ and $BE$ meet at a point $I$, and the lines $CI$ and $BD$ meet at a point $K$. Show that $I$ is the incentre of triangle $KAB$.
[i]Proposed by Jan Vonk, Belgium and Hojoo Lee, South Korea[/i]
2007 AMC 12/AHSME, 16
Each face of a regular tetrahedron is painted either red, white or blue. Two colorings are considered indistinguishable if two congruent tetrahedra with those colorings can be rotated so that their appearances are identical. How many distinguishable colorings are possible?
$ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 18 \qquad \textbf{(C)}\ 27 \qquad \textbf{(D)}\ 54 \qquad \textbf{(E)}\ 81$
2014 All-Russian Olympiad, 2
Let $ABCD$ be a trapezoid with $AB\parallel CD$ and $ \Omega $ is a circle passing through $A,B,C,D$. Let $ \omega $ be the circle passing through $C,D$ and intersecting with $CA,CB$ at $A_1$, $B_1$ respectively. $A_2$ and $B_2$ are the points symmetric to $A_1$ and $B_1$ respectively, with respect to the midpoints of $CA$ and $CB$. Prove that the points $A,B,A_2,B_2$ are concyclic.
[i]I. Bogdanov[/i]
1992 All Soviet Union Mathematical Olympiad, 563
$A$ and $B$ lie on a circle. $P$ lies on the minor arc $AB$. $Q$ and $R$ (distinct from $P$) also lie on the circle, so that $P$ and $Q$ are equidistant from $A$, and $P$ and $R$ are equidistant from $B$. Show that the intersection of $AR$ and $BQ$ is the reflection of $P$ in $AB$.