This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 353

1995 China Team Selection Test, 2

Given a fixed acute angle $\theta$ and a pair of internally tangent circles, let the line $l$ which passes through the point of tangency, $A$, cut the larger circle again at $B$ ($l$ does not pass through the centers of the circles). Let $M$ be a point on the major arc $AB$ of the larger circle, $N$ the point where $AM$ intersects the smaller circle, and $P$ the point on ray $MB$ such that $\angle MPN = \theta$. Find the locus of $P$ as $M$ moves on major arc $AB$ of the larger circle.

1969 IMO Shortlist, 3

$(BEL 3)$ Construct the circle that is tangent to three given circles.

2013 Dutch IMO TST, 3

Fix a triangle $ABC$. Let $\Gamma_1$ the circle through $B$, tangent to edge in $A$. Let $\Gamma_2$ the circle through C tangent to edge $AB$ in $A$. The second intersection of $\Gamma_1$ and $\Gamma_2$ is denoted by $D$. The line $AD$ has second intersection $E$ with the circumcircle of $\vartriangle ABC$. Show that $D$ is the midpoint of the segment $AE$.

2006 Thailand Mathematical Olympiad, 2

From a point $P$ outside a circle, two tangents are drawn touching the circle at points $A$ and $C$. Let $B$ be a point on segment $AC$, and let segment $PB$ intersect the circle at point $Q$. The angle bisector of $\angle AQC$ intersects segment $AC$ at $R$. Show that $$\frac{AB}{BC} =\left(\frac{ AR}{RC}\right)^2$$

2009 Regional Olympiad of Mexico Northeast, 3

The incircle of triangle $\vartriangle ABC$ is tangent to side $AB$ at point $P$ and to side $BC$ at point $Q$. The circle passing through points $A,P,Q$ intersects line $BC$ a second time at $M$ and the circle passes through the points $C,P,Q$ and cuts the line $AB$ a second time at point$ N$. Prove that $NM$ is tangent to the incircle of $ABC$.

2018 Dutch IMO TST, 2

Suppose a triangle $\vartriangle ABC$ with $\angle C = 90^o$ is given. Let $D$ be the midpoint of $AC$, and let $E$ be the foot of the altitude through $C$ on $BD$. Show that the tangent in $C$ of the circumcircle of $\vartriangle AEC$ is perpendicular to $AB$.

2005 Estonia Team Selection Test, 1

On a plane, a line $\ell$ and two circles $c_1$ and $c_2$ of different radii are given such that $\ell$ touches both circles at point $P$. Point $M \ne P$ on $\ell$ is chosen so that the angle $Q_1MQ_2$ is as large as possible where $Q_1$ and $Q_2$ are the tangency points of the tangent lines drawn from $M$ to $c_i$ and $c_2$, respectively, differing from $\ell$ . Find $\angle PMQ_1 + \angle PMQ_2$·

2009 IMO Shortlist, 4

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

2004 Switzerland - Final Round, 1

Let $\Gamma$ be a circle and $P$ a point outside of $\Gamma$ . A tangent from $P$ to the circle intersects it in $A$. Another line through $P$ intersects $\Gamma$ at the points $B$ and $C$. The bisector of $\angle APB$ intersects $AB$ at $D$ and $AC$ at $E$. Prove that the triangle $ADE$ is isosceles.

2011 Chile National Olympiad, 2

Let $O$ be the center of the circle circumscribed to triangle $ABC$ and let $ S_ {A} $, $ S_ {B} $, $ S_ {C} $ be the circles centered on $O$ that are tangent to the sides $BC, CA, AB$ respectively. Show that the sum of the angle between the two tangents $ S_ {A} $ from $A$ plus the angle between the two tangents $ S_ {B} $ from $B$ plus the angle between the two tangents $ S_ {C} $ from $C$ is $180$ degrees.

2019 Cono Sur Olympiad, 6

Let $ABC$ be an acute-angled triangle with $AB< AC$, and let $H$ be its orthocenter. The circumference with diameter $AH$ meets the circumscribed circumference of $ABC$ at $P\neq A$. The tangent to the circumscribed circumference of $ABC$ through $P$ intersects line $BC$ at $Q$. Show that $QP=QH$.

2016 Saudi Arabia IMO TST, 3

Given two circles $(O_1)$ and $(O_2)$ intersect at $A$ and $B$. Let $d_1$ and $d_2$ be two lines through $A$ and be symmetric with respect to $AB$. The line $d_1$ cuts $(O_1)$ and $(O_2)$ at $G, E$ ($\ne A$), respectively, the line $d_2$ cuts $(O_1)$ and $(O_2)$ at $F, H$ ($\ne A$), respectively, such that $E$ is between $A, G$ and $F$ is between $A, H$. Let $J$ be the intersection of $EH$ and $FG$. The line $BJ$ cuts $(O_1), (O_2)$ at $K, L$ ($\ne B$), respectively. Let $N$ be the intersection of $O_1K$ and $O_2L$. Prove that the circle $(NLK)$ is tangent to $AB$.

Kyiv City MO Juniors 2003+ geometry, 2011.9.41

The triangle $ABC$ is inscribed in a circle. At points $A$ and $B$ are tangents to this circle, which intersect at point $T$. A line drawn through the point $T$ parallel to the side $AC$ intersects the side $BC$ at the point $D$. Prove that $AD = CD$.

2006 Kazakhstan National Olympiad, 4

grade IX P4, X P3 The bisectors of the angles $ A $ and $ C $ of the triangle $ ABC $ intersect the circumscirbed circle of this triangle at the points $ A_0 $ and $ C_0 $, respectively. The straight line passing through the center of the inscribed circle of triangle $ ABC $ parallel to the side of $ AC $, intersects with the line $ A_0C_0 $ at $ P $. Prove that the line $ PB $ is tangent to the circumcircle of the triangle $ ABC $. grade XI P4 The bisectors of the angles $ A $ and $ C $ of the triangle $ ABC $ intersect the sides at the points $ A_1 $ and $ C_1 $, and the circumcircle of this triangle at points $ A_0 $ and $ C_0 $ respectively. Straight lines $ A_1C_1 $ and $ A_0C_0 $ intersect at point $ P $. Prove that the segment connecting $ P $ with the center inscribed circles of triangle $ ABC $, parallel to $ AC $.

2012 German National Olympiad, 3

Let $ABC$ a triangle and $k$ a circle such that: (1) The circle $k$ passes through $A$ and $B$ and touches the line $AC.$ (2) The tangent to $k$ at $B$ intersects the line $AC$ in a point $X\ne C.$ (3) The circumcircle $\omega$ of $BXC$ intersects $k$ in a point $Q\ne B.$ (4) The tangent to $\omega$ at $X$ intersects the line $AB$ in a point $Y.$ Prove that the line $XY$ is tangent to the circumcircle of $BQY.$

1994 Abels Math Contest (Norwegian MO), 1b

Let $C$ be a point on the extension of the diameter $AB$ of a circle. A line through $C$ is tangent to the circle at point $N$. The bisector of $\angle ACN$ meets the lines $AN$ and $BN$ at $P$ and $Q$ respectively. Prove that $PN = QN$.

2005 Estonia Team Selection Test, 1

On a plane, a line $\ell$ and two circles $c_1$ and $c_2$ of different radii are given such that $\ell$ touches both circles at point $P$. Point $M \ne P$ on $\ell$ is chosen so that the angle $Q_1MQ_2$ is as large as possible where $Q_1$ and $Q_2$ are the tangency points of the tangent lines drawn from $M$ to $c_i$ and $c_2$, respectively, differing from $\ell$ . Find $\angle PMQ_1 + \angle PMQ_2$·

2013 Dutch IMO TST, 3

Fix a triangle $ABC$. Let $\Gamma_1$ the circle through $B$, tangent to edge in $A$. Let $\Gamma_2$ the circle through C tangent to edge $AB$ in $A$. The second intersection of $\Gamma_1$ and $\Gamma_2$ is denoted by $D$. The line $AD$ has second intersection $E$ with the circumcircle of $\vartriangle ABC$. Show that $D$ is the midpoint of the segment $AE$.

Croatia MO (HMO) - geometry, 2018.3

Let $k$ be a circle centered at $O$. Let $\overline{AB}$ be a chord of that circle and $M$ its midpoint. Tangent on $k$ at points $A$ and $B$ intersect at $T$. The line $\ell$ goes through $T$, intersect the shorter arc $AB$ at the point $C$ and the longer arc $AB$ at the point $D$, so that $|BC| = |BM|$. Prove that the circumcenter of the triangle $ADM$ is the reflection of $O$ across the line $AD$

Indonesia MO Shortlist - geometry, g1

In triangle $ABC$, let $D$ be the midpoint of $BC$, and $BE$, $CF$ are the altitudes. Prove that $DE$ and $DF$ are both tangents to the circumcircle of triangle $AEF$

2018 Sharygin Geometry Olympiad, 7

Let $B_1,C_1$ be the midpoints of sides $AC,AB$ of a triangle $ABC$ respectively. The tangents to the circumcircle at $B$ and $C$ meet the rays $CC_1,BB_1$ at points $K$ and $L$ respectively. Prove that $\angle BAK = \angle CAL$.

1990 IMO Shortlist, 11

Chords $ AB$ and $ CD$ of a circle intersect at a point $ E$ inside the circle. Let $ M$ be an interior point of the segment $ EB$. The tangent line at $ E$ to the circle through $ D$, $ E$, and $ M$ intersects the lines $ BC$ and $ AC$ at $ F$ and $ G$, respectively. If \[ \frac {AM}{AB} \equal{} t, \] find $\frac {EG}{EF}$ in terms of $ t$.

2002 Tuymaada Olympiad, 8

The circle with the center of $ O $ touches the sides of the angle $ A $ at the points of $ K $ and $ M $. The tangent to the circle intersects the segments $ AK $ and $ AM $ at points $ B $ and $ C $ respectively, and the line $ KM $ intersects the segments $ OB $ and $ OC $ at the points $ D $ and $ E $. Prove that the area of the triangle $ ODE $ is equal to a quarter of the area of a triangle $ BOC $ if and only if the angle $ A $ is $ 60^\circ $.

2017 Saudi Arabia JBMO TST, 3

Let $(O)$ be a circle, and $BC$ be a chord of $(O)$ such that $BC$ is not a diameter. Let $A$ be a point on the larger arc $BC$ of $(O)$, and let $E, F$ be the feet of the perpendiculars from $B$ and $C$ to $AC$ and $AB$, respectively. 1. Prove that the tangents to $(AEF)$ at $E$ and $F$ intersect at a fixed point $M$ when $A$ moves on the larger arc $BC$ of $(O)$. 2. Let $T$ be the intersection of $EF$ and $BC$, and let $H$ be the orthocenter of $ABC$. Prove that $TH$ is perpendicular to $AM$.

2011 Dutch IMO TST, 3

Let $\Gamma_1$ and $\Gamma_2$ be two intersecting circles with midpoints respectively $O_1$ and $O_2$, such that $\Gamma_2$ intersects the line segment $O_1O_2$ in a point $A$. The intersection points of $\Gamma_1$ and $\Gamma_2$ are $C$ and $D$. The line $AD$ intersects $\Gamma_1$ a second time in $S$. The line $CS$ intersects $O_1O_2$ in $F$. Let $\Gamma_3$ be the circumcircle of triangle $AD$. Let $E$ be the second intersection point of $\Gamma_1$ and $\Gamma_3$. Prove that $O_1E$ is tangent to $\Gamma_3$.