This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 844

2011 Oral Moscow Geometry Olympiad, 4

In the trapezoid $ABCD, AB = BC = CD, CH$ is the altitude. Prove that the perpendicular from $H$ on $AC$ passes through the midpoint of $BD$.

2012 Grand Duchy of Lithuania, 2

The base $AB$ of a trapezium $ABCD$ is longer than the base $CD$, and $\angle ADC$ is a right angle. The diagonals $AC$ and $BD$ are perpendicular. Let $E$ be the foot of the altitude from $D$ to the line $BC$. Prove that $$\frac{AE}{BE} =\frac{ AC \cdot CD}{AC^2 - CD^2}$$ .

2013 USAMTS Problems, 2

Let $ABCD$ be a quadrilateral with $\overline{AB}\parallel\overline{CD}$, $AB=16$, $CD=12$, and $BC<AD$. A circle with diameter $12$ is inside of $ABCD$ and tangent to all four sides. Find $BC$.

2008 China Team Selection Test, 3

Find all positive integers $ n$ having the following properties:in two-dimensional Cartesian coordinates, there exists a convex $ n$ lattice polygon whose lengths of all sides are odd numbers, and unequal to each other. (where lattice polygon is defined as polygon whose coordinates of all vertices are integers in Cartesian coordinates.)

1949-56 Chisinau City MO, 30

Through the point of intersection of the diagonals of the trapezoid, a straight line is drawn parallel to its bases. Determine the length of the segment of this straight line, enclosed between the lateral sides of the trapezoid, if the lengths of the bases of the trapezoid are equal to $a$ and $b$.

2002 CentroAmerican, 4

Let $ ABC$ be a triangle, $ D$ be the midpoint of $ BC$, $ E$ be a point on segment $ AC$ such that $ BE\equal{}2AD$ and $ F$ is the intersection point of $ AD$ with $ BE$. If $ \angle DAC\equal{}60^{\circ}$, find the measure of the angle $ FEA$.

2006 Harvard-MIT Mathematics Tournament, 3

The train schedule in Hummut is hopelessly unreliable. Train $A$ will enter Intersection $X$ from the west at a random time between $9:00$ am and $2:30$ pm; each moment in that interval is equally likely. Train $B$ will enter the same intersection from the north at a random time between $9:30$ am and $12:30$ pm, independent of Train $A$; again, each moment in the interval is equally likely. If each train takes $45$ minutes to clear the intersection, what is the probability of a collision today?

2012 Bundeswettbewerb Mathematik, 4

From the vertices of a regular 27-gon, seven are chosen arbitrarily. Prove that among these seven points there are three points that form an isosceles triangle or four points that form an isosceles trapezoid.

Swiss NMO - geometry, 2015.8

Let $ABCD$ be a trapezoid, where $AB$ and $CD$ are parallel. Let $P$ be a point on the side $BC$. Show that the parallels to $AP$ and $PD$ intersect through $C$ and $B$ to $DA$, respectively.

2007 Iran MO (3rd Round), 5

Let $ ABC$ be a triangle. Squares $ AB_{c}B_{a}C$, $ CA_{b}A_{c}B$ and $ BC_{a}C_{b}A$ are outside the triangle. Square $ B_{c}B_{c}'B_{a}'B_{a}$ with center $ P$ is outside square $ AB_{c}B_{a}C$. Prove that $ BP,C_{a}B_{a}$ and $ A_{c}B_{c}$ are concurrent.

2010 Iran Team Selection Test, 8

Let $ABC$ an isosceles triangle and $BC>AB=AC$. $D,M$ are respectively midpoints of $BC, AB$. $X$ is a point such that $BX\perp AC$ and $XD||AB$. $BX$ and $AD$ meet at $H$. If $P$ is intersection point of $DX$ and circumcircle of $AHX$ (other than $X$), prove that tangent from $A$ to circumcircle of triangle $AMP$ is parallel to $BC$.

2003 AMC 8, 10

$\textbf{Bake Sale}$ Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies di ffer, as shown. $\circ$ Art's cookies are trapezoids: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(5,0)--(5,3)--(2,3)--cycle); draw(rightanglemark((5,3), (5,0), origin)); label("5 in", (2.5,0), S); label("3 in", (5,1.5), E); label("3 in", (3.5,3), N);[/asy] $\circ$ Roger's cookies are rectangles: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(4,0)--(4,2)--(0,2)--cycle); draw(rightanglemark((4,2), (4,0), origin)); draw(rightanglemark((0,2), origin, (4,0))); label("4 in", (2,0), S); label("2 in", (4,1), E);[/asy] $\circ$ Paul's cookies are parallelograms: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle); draw((2.5,2)--(2.5,0), dashed); draw(rightanglemark((2.5,2),(2.5,0), origin)); label("3 in", (1.5,0), S); label("2 in", (2.5,1), W);[/asy] $\circ$ Trisha's cookies are triangles: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(3,0)--(3,4)--cycle); draw(rightanglemark((3,4),(3,0), origin)); label("3 in", (1.5,0), S); label("4 in", (3,2), E);[/asy] Each friend uses the same amount of dough, and Art makes exactly 12 cookies. How many cookies will be in one batch of Trisha's cookies? $ \textbf{(A)}\ 10\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 24$

2008 National Olympiad First Round, 33

Let $E$ be a point inside the rhombus $ABCD$ such that $|AE|=|EB|$, $m(\widehat{EAB})=12^\circ$, and $m(\widehat{DAE})=72^\circ$. What is $m(\widehat{CDE})$ in degrees? $ \textbf{(A)}\ 64 \qquad\textbf{(B)}\ 66 \qquad\textbf{(C)}\ 68 \qquad\textbf{(D)}\ 70 \qquad\textbf{(E)}\ 72 $

2000 Romania Team Selection Test, 1

Let $P_1$ be a regular $n$-gon, where $n\in\mathbb{N}$. We construct $P_2$ as the regular $n$-gon whose vertices are the midpoints of the edges of $P_1$. Continuing analogously, we obtain regular $n$-gons $P_3,P_4,\ldots ,P_m$. For $m\ge n^2-n+1$, find the maximum number $k$ such that for any colouring of vertices of $P_1,\ldots ,P_m$ in $k$ colours there exists an isosceles trapezium $ABCD$ whose vertices $A,B,C,D$ have the same colour. [i]Radu Ignat[/i]

2003 China Team Selection Test, 1

Triangle $ABC$ is inscribed in circle $O$. Tangent $PD$ is drawn from $A$, $D$ is on ray $BC$, $P$ is on ray $DA$. Line $PU$ ($U \in BD$) intersects circle $O$ at $Q$, $T$, and intersect $AB$ and $AC$ at $R$ and $S$ respectively. Prove that if $QR=ST$, then $PQ=UT$.

2007 Romania Team Selection Test, 2

Let $ A_{1}A_{2}A_{3}A_{4}A_{5}$ be a convex pentagon, such that \[ [A_{1}A_{2}A_{3}] \equal{} [A_{2}A_{3}A_{4}] \equal{} [A_{3}A_{4}A_{5}] \equal{} [A_{4}A_{5}A_{1}] \equal{} [A_{5}A_{1}A_{2}].\] Prove that there exists a point $ M$ in the plane of the pentagon such that \[ [A_{1}MA_{2}] \equal{} [A_{2}MA_{3}] \equal{} [A_{3}MA_{4}] \equal{} [A_{4}MA_{5}] \equal{} [A_{5}MA_{1}].\] Here $ [XYZ]$ stands for the area of the triangle $ \Delta XYZ$.

2018 Ecuador NMO (OMEC), 3

Let $ABCD$ be a convex quadrilateral with $AB\le CD$. Points $E ,F$ are chosen on segment $AB$ and points $G ,H$ are chosen on the segment $CD$, are chosen such that $AE = BF = CG = DH <\frac{AB}{2}$. Let $P, Q$, and $R$ be the midpoints of $EG$, $FH$, and $CD$, respectively. It is known that $PR$ is parallel to $AD$ and $QR$ is parallel to $BC$. a) Show that $ABCD$ is a trapezoid. b) Let $d$ be the difference of the lengths of the parallel sides. Show that $2PQ\le d$.

2008 Mathcenter Contest, 4

The trapezoid $ABCD$ has sides $AB$ and $CD$ that are parallel $\hat{DAB} = 6^{\circ}$ and $\hat{ABC} = 42^{\circ}$. Point $X$ lies on the side $AB$ , such that $\hat{AXD} = 78^{\circ}$ and $\hat{CXB} = 66^{\circ}$. The distance between $AB$ and $CD$ is $1$ unit . Prove that $AD + DX - (BC + CX) = 8$ units. (Heir of Ramanujan)

2009 Today's Calculation Of Integral, 484

Let $C: y=\ln x$. For each positive integer $n$, denote by $A_n$ the area of the part enclosed by the line passing through two points $(n,\ \ln n),\ (n+1,\ \ln (n+1))$ and denote by $B_n$ that of the part enclosed by the tangent line at the point $(n,\ \ln n)$, $C$ and the line $x=n+1$. Let $g(x)=\ln (x+1)-\ln x$. (1) Express $A_n,\ B_n$ in terms of $n,\ g(n)$ respectively. (2) Find $\lim_{n\to\infty} n\{1-ng(n)\}$.

2011 China Team Selection Test, 1

Let $H$ be the orthocenter of an acute trangle $ABC$ with circumcircle $\Gamma$. Let $P$ be a point on the arc $BC$ (not containing $A$) of $\Gamma$, and let $M$ be a point on the arc $CA$ (not containing $B$) of $\Gamma$ such that $H$ lies on the segment $PM$. Let $K$ be another point on $\Gamma$ such that $KM$ is parallel to the Simson line of $P$ with respect to triangle $ABC$. Let $Q$ be another point on $\Gamma$ such that $PQ \parallel BC$. Segments $BC$ and $KQ$ intersect at a point $J$. Prove that $\triangle KJM$ is an isosceles triangle.

1992 AIME Problems, 9

Trapezoid $ABCD$ has sides $AB=92$, $BC=50$, $CD=19$, and $AD=70$, with $AB$ parallel to $CD$. A circle with center $P$ on $AB$ is drawn tangent to $BC$ and $AD$. Given that $AP=\frac mn$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.

2003 Costa Rica - Final Round, 4

$S_{1}$ and $S_{2}$ are two circles that intersect at distinct points $P$ and $Q$. $\ell_{1}$ and $\ell_{2}$ are two parallel lines through $P$ and $Q$. $\ell_{1}$ intersects $S_{1}$ and $S_{2}$ at points $A_{1}$ and $A_{2}$, different from $P$, respectively. $\ell_{2}$ intersects $S_{1}$ and $S_{2}$ at points $B_{1}$ and $B_{2}$, different from $Q$, respectively. Show that the perimeters of the triangles $A_{1}QA_{2}$ and $B_{1}PB_{2}$ are equal.

2001 May Olympiad, 2

Let's take a $ABCD$ rectangle of paper; the side $AB$ measures $5$ cm and the side $BC$ measures $9$ cm. We do three folds: 1.We take the $AB$ side on the $BC$ side and call $P$ the point on the $BC$ side that coincides with $A$. A right trapezoid $BCDQ$ is then formed. 2. We fold so that $B$ and $Q$ coincide. A $5$-sided polygon $RPCDQ$ is formed. 3. We fold again by matching $D$ with $C$ and $Q$ with $P$. A new right trapezoid $RPCS$. After making these folds, we make a cut perpendicular to $SC$ by its midpoint $T$, obtaining the right trapezoid $RUTS$. Calculate the area of the figure that appears as we unfold the last trapezoid $RUTS$.

1997 IberoAmerican, 2

In an acute triangle $\triangle{ABC}$, let $AE$ and $BF$ be highs of it, and $H$ its orthocenter. The symmetric line of $AE$ with respect to the angle bisector of $\sphericalangle{A}$ and the symmetric line of $BF$ with respect to the angle bisector of $\sphericalangle{B}$ intersect each other on the point $O$. The lines $AE$ and $AO$ intersect again the circuncircle to $\triangle{ABC}$ on the points $M$ and $N$ respectively. Let $P$ be the intersection of $BC$ with $HN$; $R$ the intersection of $BC$ with $OM$; and $S$ the intersection of $HR$ with $OP$. Show that $AHSO$ is a paralelogram.

2021 Sharygin Geometry Olympiad, 21

A trapezoid $ABCD$ is bicentral. The vertex $A$, the incenter $I$, the circumcircle $\omega$ and its center $O$ are given and the trapezoid is erased. Restore it using only a ruler.