Found problems: 844
2009 Harvard-MIT Mathematics Tournament, 3
A rectangular piece of paper with side lengths 5 by 8 is folded along the dashed lines shown below, so that the folded flaps just touch at the corners as shown by the dotted lines. Find the area of the resulting trapezoid.
[asy]
size(150);
defaultpen(linewidth(0.8));
draw(origin--(8,0)--(8,5)--(0,5)--cycle,linewidth(1));
draw(origin--(8/3,5)^^(16/3,5)--(8,0),linetype("4 4"));
draw(origin--(4,3)--(8,0)^^(8/3,5)--(4,3)--(16/3,5),linetype("0 4"));
label("$5$",(0,5/2),W);
label("$8$",(4,0),S);
[/asy]
2021 Iran Team Selection Test, 5
Point $X$ is chosen inside the non trapezoid quadrilateral $ABCD$ such that $\angle AXD +\angle BXC=180$.
Suppose the angle bisector of $\angle ABX$ meets the $D$-altitude of triangle $ADX$ in $K$, and the angle bisector of $\angle DCX$ meets the $A$-altitude of triangle $ADX$ in $L$.We know $BK \perp CX$ and $CL \perp BX$. If the circumcenter of $ADX$ is on the line $KL$ prove that $KL \perp AD$.
Proposed by [i]Alireza Dadgarnia[/i]
2020 Austrian Junior Regional Competition, 3
Given is an isosceles trapezoid $ABCD$ with $AB \parallel CD$ and $AB> CD$. The projection from $D$ on $ AB$ is $E$. The midpoint of the diagonal $BD$ is $M$. Prove that $EM$ is parallel to $AC$.
(Karl Czakler)
1988 Tournament Of Towns, (176) 2
Two isosceles trapezoids are inscribed in a circle in such a way that each side of each trapezoid is parallel to a certain side of the other trapezoid . Prove that the diagonals of one trapezoid are equal to the diagonals of the other.
2021 New Zealand MO, 2
Let $ABCD$ be a trapezium such that $AB\parallel CD$. Let $E$ be the intersection of diagonals $AC$ and $BD$. Suppose that $AB = BE$ and $AC = DE$. Prove that the internal angle bisector of $\angle BAC$ is perpendicular to $AD$.
2015 Switzerland - Final Round, 8
Let $ABCD$ be a trapezoid, where $AB$ and $CD$ are parallel. Let $P$ be a point on the side $BC$. Show that the parallels to $AP$ and $PD$ intersect through $C$ and $B$ to $DA$, respectively.
2009 National Olympiad First Round, 13
In trapezoid $ ABCD$, $ AB \parallel CD$, $ \angle CAB < 90^\circ$, $ AB \equal{} 5$, $ CD \equal{} 3$, $ AC \equal{} 15$. What are the sum of different integer values of possible $ BD$?
$\textbf{(A)}\ 101 \qquad\textbf{(B)}\ 108 \qquad\textbf{(C)}\ 115 \qquad\textbf{(D)}\ 125 \qquad\textbf{(E)}\ \text{None}$
2014 AMC 12/AHSME, 24
Let $ABCDE$ be a pentagon inscribed in a circle such that $AB=CD=3$, $BC=DE=10$, and $AE=14$. The sum of the lengths of all diagonals of $ABCDE$ is equal to $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
$\textbf{(A) }129\qquad
\textbf{(B) }247\qquad
\textbf{(C) }353\qquad
\textbf{(D) }391\qquad
\textbf{(E) }421\qquad$
2013 NIMO Summer Contest, 13
In trapezoid $ABCD$, $AD \parallel BC$ and $\angle ABC + \angle CDA = 270^{\circ}$. Compute $AB^2$ given that $AB \cdot \tan(\angle BCD) = 20$ and $CD = 13$.
[i]Proposed by Lewis Chen[/i]
Kyiv City MO Juniors 2003+ geometry, 2018.8.41
In a trapezoid $ABCD$ with bases $AD$ and $BC$, the bisector of the angle $\angle DAB$ intersects the bisectors of the angles $\angle ABC$ and $\angle CDA$ at the points $P$ and $S$, respectively, and the bisector of the angle $\angle BCD$ intersects the bisectors of the angles $\angle ABC$ and $\angle CDA$ at the points $Q$ and $R$, respectively. Prove that if $PS\parallel RQ$, then $AB = CD$.
2013 Polish MO Finals, 4
Given is a tetrahedron $ABCD$ in which $AB=CD$ and the sum of measures of the angles $BAD$ and $BCD$ equals $180$ degrees. Prove that the measure of the angle $BAD$ is larger than the measure of the angle $ADC$.
2003 Iran MO (2nd round), 2
$\angle{A}$ is the least angle in $\Delta{ABC}$. Point $D$ is on the arc $BC$ from the circumcircle of $\Delta{ABC}$. The perpendicular bisectors of the segments $AB,AC$ intersect the line $AD$ at $M,N$, respectively. Point $T$ is the meet point of $BM,CN$. Suppose that $R$ is the radius of the circumcircle of $\Delta{ABC}$. Prove that:
\[ BT+CT\leq{2R}. \]
2003 AMC 8, 8
$\textbf{Bake Sale}$
Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies differ, as shown.
$\circ$ Art's cookies are trapezoids:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(5,0)--(5,3)--(2,3)--cycle);
draw(rightanglemark((5,3), (5,0), origin));
label("5 in", (2.5,0), S);
label("3 in", (5,1.5), E);
label("3 in", (3.5,3), N);[/asy]
$\circ$ Roger's cookies are rectangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(4,0)--(4,2)--(0,2)--cycle);
draw(rightanglemark((4,2), (4,0), origin));
draw(rightanglemark((0,2), origin, (4,0)));
label("4 in", (2,0), S);
label("2 in", (4,1), E);[/asy]
$\circ$ Paul's cookies are parallelograms:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle);
draw((2.5,2)--(2.5,0), dashed);
draw(rightanglemark((2.5,2),(2.5,0), origin));
label("3 in", (1.5,0), S);
label("2 in", (2.5,1), W);[/asy]
$\circ$ Trisha's cookies are triangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(3,4)--cycle);
draw(rightanglemark((3,4),(3,0), origin));
label("3 in", (1.5,0), S);
label("4 in", (3,2), E);[/asy]
Each friend uses the same amount of dough, and Art makes exactly 12 cookies. Who gets the fewest cookies from one batch of cookie dough?
$ \textbf{(A)}\ \text{Art}\qquad\textbf{(B)}\ \text{Roger}\qquad\textbf{(C)}\ \text{Paul}\qquad\textbf{(D)}\ \text{Trisha}\qquad\textbf{(E)}\ \text{There is a tie for fewest.}$
2000 Dutch Mathematical Olympiad, 3
Isosceles, similar triangles $QPA$ and $SPB$ are constructed (outwards) on the sides of parallelogram $PQRS$ (where $PQ = AQ$ and $PS = BS$). Prove that triangles $RAB$, $QPA$ and $SPB$ are similar.
2007 QEDMO 4th, 2
Let $ ABCD$ be a trapezoid with $ BC\parallel AD$, and let $ O$ be the point of intersection of its diagonals $ AC$ and $ BD$. Prove that $ \left\vert ABCD\right\vert \equal{}\left( \sqrt{\left\vert BOC\right\vert }\plus{}\sqrt{\left\vert DOA\right\vert }\right) ^{2}$.
[hide="Source of the problem"][i]Source of the problem:[/i] exercise 8 in: V. Alekseev, V. Galkin, V. Panferov, V. Tarasov, [i]Zadachi o trapezijah[/i], Kvant 6/2000, pages 37-4.[/hide]
2017 Hanoi Open Mathematics Competitions, 14
Given trapezoid $ABCD$ with bases $AB \parallel CD$ ($AB < CD$). Let $O$ be the intersection of $AC$ and $BD$. Two straight lines from $D$ and $C$ are perpendicular to $AC$ and $BD$ intersect at $E$ , i.e. $CE \perp BD$ and $DE \perp AC$ . By analogy, $AF \perp BD$ and $BF \perp AC$ . Are three points $E , O, F$ located on the same line?
Ukraine Correspondence MO - geometry, 2016.11
Inside the square $ABCD$ mark the point $P$, for which $\angle BAP = 30^o$ and $\angle BCP = 15^o$. The point $Q$ was chosen so that $APCQ$ is an isosceles trapezoid ($PC\parallel AQ$). Find the angles of the triangle $CAM$, where $M$ is the midpoint of $PQ$.
2003 IberoAmerican, 2
Let $C$ and $D$ be two points on the semicricle with diameter $AB$ such that $B$ and $C$ are on distinct sides of the line $AD$. Denote by $M$, $N$ and $P$ the midpoints of $AC$, $BD$ and $CD$ respectively. Let $O_A$ and $O_B$ the circumcentres of the triangles $ACP$ and $BDP$. Show that the lines $O_AO_B$ and $MN$ are parallel.
2017 Iran MO (2nd Round), 2
Let $ABCD$ be an isosceles trapezoid such that $AB \parallel CD$. Suppose that there exists a point $P$ in $ABCD$ such that $\angle APB > \angle ADC$ and $\angle DPC > \angle ABC$. Prove that $$AB+CD>DA+BC.$$
2009 Hungary-Israel Binational, 1
Given is the convex quadrilateral $ ABCD$. Assume that there exists a point $ P$ inside the quadrilateral for which the triangles $ ABP$ and $ CDP$ are both isosceles right triangles with the right angle at the common vertex $ P$. Prove that there exists a point $ Q$ for which the triangles $ BCQ$ and $ ADQ$ are also isosceles right triangles with the right angle at the common vertex $ Q$.
2022 Chile Junior Math Olympiad, 2
In a trapezoid $ABCD$ whose parallel sides $AB$ and $CD$ are in ratio $\frac{AB}{CD}=\frac32$, the points $ N$ and $M$ are marked on the sides $BC$ and $AB$ respectively, in such a way that $BN = 3NC$ and $AM = 2MB$ and segments $AN$ and $DM$ are drawn that intersect at point $P$, find the ratio between the areas of triangle $APM$ and trapezoid $ABCD$.
[img]https://cdn.artofproblemsolving.com/attachments/7/8/21d59ca995d638dfcb76f9508e439fd93a5468.png[/img]
V Soros Olympiad 1998 - 99 (Russia), 9.5
In the trapezoid $ABCD$ with bases $BC = a$, $AD = b$, the equality holds: $\angle BAC + \angle ACD = 180^o$. The straight line $AC$ intersects the common tangents to the circumcircles of the triangles $ABC$ and $ACD$ at the points Find $PQ$.
2014 CentroAmerican, 2
Let $ABCD$ be a trapezoid with bases $AB$ and $CD$, inscribed in a circle of center $O$. Let $P$ be the intersection of the lines $BC$ and $AD$. A circle through $O$ and $P$ intersects the segments $BC$ and $AD$ at interior points $F$ and $G$, respectively. Show that $BF=DG$.
2020 Yasinsky Geometry Olympiad, 4
In an isosceles trapezoid $ABCD$, the base $AB$ is twice as large as the base $CD$. Point $M$ is the midpoint of $AB$. It is known that the center of the circle inscribed in the triangle $MCB$ lies on the circle circumscribed around the triangle $MDC$. Find the angle $\angle MBC$.
[img]https://cdn.artofproblemsolving.com/attachments/8/a/7af6a1d32c4e2affa49cb3eed9c10ba1e7ab71.png[/img]
2011 Federal Competition For Advanced Students, Part 2, 3
We are given a non-isosceles triangle $ABC$ with incenter $I$. Show that the circumcircle $k$ of the triangle $AIB$ does not touch the lines $CA$ and $CB$.
Let $P$ be the second point of intersection of $k$ with $CA$ and let $Q$ be the second point of intersection of $k$ with $CB$.
Show that the four points $A$, $B$, $P$ and $Q$ (not necessarily in this order) are the vertices of a trapezoid.