Found problems: 844
2006 IMO Shortlist, 2
Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic.
[i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]
Durer Math Competition CD Finals - geometry, 2022.D4
The longer base of trapezoid $ABCD$ is $AB$, while the shorter base is $CD$. Diagonal $AC$ bisects the interior angle at $A$. The interior bisector at $B$ meets diagonal $AC$ at $E$. Line $DE$ meets segment $AB$ at $F$. Suppose that $AD = FB$ and $BC = AF$. Find the interior angles of quadrilateral $ABCD$, if we know that $\angle BEC = 54^o$.
2018 CMIMC Individual Finals, 2
Suppose $ABCD$ is a trapezoid with $AB\parallel CD$ and $AB\perp BC$. Let $X$ be a point on segment $\overline{AD}$ such that $AD$ bisects $\angle BXC$ externally, and denote $Y$ as the intersection of $AC$ and $BD$. If $AB=10$ and $CD=15$, compute the maximum possible value of $XY$.
2016 Swedish Mathematical Competition, 3
The quadrilateral $ABCD$ is an isosceles trapezoid, where $AB\parallel CD$. The trapezoid is inscribed in a circle with radius $R$ and center on side $AB$. Point $E$ lies on the circumscribed circle and is such that $\angle DAE = 90^o$. Given that $\frac{AE}{AB}=\frac34$, calculate the length of the sides of the isosceles trapezoid.
1979 AMC 12/AHSME, 28
Circles with centers $A ,~ B,$ and $C$ each have radius $r$, where $1 < r < 2$. The distance between each pair of centers is $2$. If $B'$ is the point of intersection of circle $A$ and circle $C$ which is outside circle $B$, and if $C'$ is the point of intersection of circle $A$ and circle $B$ which is outside circle $C$, then length $B'C'$ equals
$\textbf{(A) }3r-2\qquad\textbf{(B) }r^2\qquad\textbf{(C) }r+\sqrt{3(r-1)}\qquad$
$\textbf{(D) }1+\sqrt{3(r^2-1)}\qquad\textbf{(E) }\text{none of these}$
[asy]
//Holy crap, CSE5 is freaking amazing!
import cse5;
pathpen=black;
pointpen=black;
dotfactor=3;
size(200);
pair A=(1,2),B=(2,0),C=(0,0);
D(CR(A,1.5));
D(CR(B,1.5));
D(CR(C,1.5));
D(MP("$A$",A));
D(MP("$B$",B));
D(MP("$C$",C));
pair[] BB,CC;
CC=IPs(CR(A,1.5),CR(B,1.5));
BB=IPs(CR(A,1.5),CR(C,1.5));
D(BB[0]--CC[1]);
MP("$B'$",BB[0],NW);MP("$C'$",CC[1],NE);
//Credit to TheMaskedMagician for the diagram
[/asy]
2001 South africa National Olympiad, 5
Starting from a given cyclic quadrilateral $\mathcal{Q}_0$, a sequence of quadrilaterals is constructed so that $\mathcal{Q}_{k + 1}$ is the circumscribed quadrilateral of $\mathcal{Q}_k$ for $k = 0,1,\dots$. The sequence terminates when a quadrilateral is reached that is not cyclic. (The circumscribed quadrilateral of a cylic quadrilateral $ABCD$ has sides that are tangent to the circumcircle of $ABCD$ at $A$, $B$, $C$ and $D$.) Prove that the sequence always terminates, except when $\mathcal{Q}_0$ is a square.
2023 Euler Olympiad, Round 2, 4
Let $ABCD$ be a trapezoid, with $AD \parallel BC$, let $M$ be the midpoint of $AD$, and let $C_1$ be symmetric point to $C$ with respect to line $BD$. Segment $BM$ meets diagonal $AC$ at point $K$, and ray $C_1K$ meets line $BD$ at point $H$. Prove that $\angle{AHD}$ is a right angle.
[i]Proposed by Giorgi Arabidze, Georgia[/i]
2008 National Olympiad First Round, 9
Let $E$ be a point outside the square $ABCD$ such that $m(\widehat{BEC})=90^{\circ}$, $F\in [CE]$, $[AF]\perp [CE]$, $|AB|=25$, and $|BE|=7$. What is $|AF|$?
$
\textbf{(A)}\ 29
\qquad\textbf{(B)}\ 30
\qquad\textbf{(C)}\ 31
\qquad\textbf{(D)}\ 32
\qquad\textbf{(E)}\ 33
$
2020 Yasinsky Geometry Olympiad, 3
Point $M$ is the midpoint of the side $CD$ of the trapezoid $ABCD$, point $K$ is the foot of the perpendicular drawn from point $M$ to the side $AB$. Give that $3BK \le AK$. Prove that $BC + AD\ge 2BM$.
2024 Yasinsky Geometry Olympiad, 4
On side \( AB \) of an isosceles trapezoid \( ABCD \) (\( AD \parallel BC \)), points \( E \) and \( F \) are chosen such that a circle can be inscribed in quadrilateral \( CDEF \). Prove that the circumcircles of triangles \( ADE \) and \( BCF \) are tangent to each other.
[i]Proposed by Matthew Kurskyi[/i]
2007 India Regional Mathematical Olympiad, 5
A trapezium $ ABCD$, in which $ AB$ is parallel to $ CD$, is inscribed in a circle with centre $ O$. Suppose the diagonals $ AC$ and $ BD$ of the trapezium intersect at $ M$, and $ OM \equal{} 2$.
[b](a)[/b] If $ \angle AMB$ is $ 60^\circ ,$ find, with proof, the difference between the lengths of the parallel sides.
[b](b)[/b] If $ \angle AMD$ is $ 60^\circ ,$ find, with proof, the difference between the lengths of the parallel sides.
[b][Weightage 17/100][/b]
2005 All-Russian Olympiad Regional Round, 9.6
9.6, 10.6 Construct for each vertex of the trapezium a symmetric point wrt to the diagonal, which doesn't contain this vertex. Prove that if four new points form a quadrilateral then it is a trapezium.
([i]L. Emel'yanov[/i])
2008 Mongolia Team Selection Test, 3
Given a circumscribed trapezium $ ABCD$ with circumcircle $ \omega$ and 2 parallel sides $ AD,BC$ ($ BC<AD$). Tangent line of circle $ \omega$ at the point $ C$ meets with the line $ AD$ at point $ P$. $ PE$ is another tangent line of circle $ \omega$ and $ E\in\omega$. The line $ BP$ meets circle $ \omega$ at point $ K$. The line passing through the point $ C$ paralel to $ AB$ intersects with $ AE$ and $ AK$ at points $ N$ and $ M$ respectively. Prove that $ M$ is midpoint of segment $ CN$.
2004 District Olympiad, 4
In the right trapezoid $ABCD$ with $AB \parallel CD, \angle B = 90^o$ and $AB = 2DC$.
At points $A$ and $D$ there is therefore a part of the plane $(ABC)$ perpendicular to the plane of the trapezoid, on which the points $N$ and $P$ are taken, ($AP$ and $PD$ are perpendicular to the plane) such that $DN = a$ and $AP = \frac{a}{2}$ . Knowing that $M$ is the midpoint of the side $BC$ and the triangle $MNP$ is equilateral, determine:
a) the cosine of the angle between the planes $MNP$ and $ABC$.
b) the distance from $D$ to the plane $MNP$
2008 China Northern MO, 1A
As shown in figure , $\odot O$ is the inscribed circle of trapezoid $ABCD$, and the tangent points are $E, F, G, H$, $AB \parallel CD$. The line passing through$ B$, parallel to $AD$ intersects extension of $DC$ at point $P$. The extension of $AO$ intersects $CP$ at point $Q$. If $AE=BE$ , prove that $\angle CBQ = \angle PBQ$.
[img]https://cdn.artofproblemsolving.com/attachments/d/2/7c3a04bb1c59bc6d448204fd78f553ea53cb9e.png[/img]
2015 Korea National Olympiad, 2
An isosceles trapezoid $ABCD$, inscribed in $\omega$, satisfies $AB=CD, AD<BC, AD<CD$.
A circle with center $D$ and passing $A$ hits $BD, CD, \omega$ at $E, F, P(\not= A)$, respectively.
Let $AP \cap EF = Q$, and $\omega$ meet $CQ$ and the circumcircle of $\triangle BEQ$ at $R(\not= C), S(\not= B)$, respectively.
Prove that $\angle BER= \angle FSC$.
2021 Oral Moscow Geometry Olympiad, 2
A trapezoid is given in which one base is twice as large as the other. Use one ruler (no divisions) to draw the midline of this trapezoid.
1996 China Team Selection Test, 1
Let side $BC$ of $\bigtriangleup ABC$ be the diameter of a semicircle which cuts $AB$ and $AC$ at $D$ and $E$ respectively. $F$ and $G$ are the feet of the perpendiculars from $D$ and $E$ to $BC$ respectively. $DG$ and $EF$ intersect at $M$. Prove that $AM \perp BC$.
2014 Purple Comet Problems, 12
The vertices of hexagon $ABCDEF$ lie on a circle. Sides $AB = CD = EF = 6$, and sides $BC = DE = F A = 10$. The area of the hexagon is $m\sqrt3$. Find $m$.
2005 Rioplatense Mathematical Olympiad, Level 3, 2
In trapezoid $ABCD$, the sum of the lengths of the bases $AB$ and $CD$ is equal to the length of the diagonal $BD$. Let $M$ denote the midpoint of $BC$, and let $E$ denote the reflection of $C$ about the line $DM$. Prove that $\angle AEB=\angle ACD$.
2011 China Team Selection Test, 1
Let $H$ be the orthocenter of an acute trangle $ABC$ with circumcircle $\Gamma$. Let $P$ be a point on the arc $BC$ (not containing $A$) of $\Gamma$, and let $M$ be a point on the arc $CA$ (not containing $B$) of $\Gamma$ such that $H$ lies on the segment $PM$. Let $K$ be another point on $\Gamma$ such that $KM$ is parallel to the Simson line of $P$ with respect to triangle $ABC$. Let $Q$ be another point on $\Gamma$ such that $PQ \parallel BC$. Segments $BC$ and $KQ$ intersect at a point $J$. Prove that $\triangle KJM$ is an isosceles triangle.
2012 India IMO Training Camp, 1
Let $ABCD$ be a trapezium with $AB\parallel CD$. Let $P$ be a point on $AC$ such that $C$ is between $A$ and $P$; and let $X, Y$ be the midpoints of $AB, CD$ respectively. Let $PX$ intersect $BC$ in $N$ and $PY$ intersect $AD$ in $M$. Prove that $MN\parallel AB$.
2011 ISI B.Math Entrance Exam, 6
Let $f(x)=e^{-x}\ \forall\ x\geq 0$ and let $g$ be a function defined as for every integer $k \ge 0$, a straight line joining $(k,f(k))$ and $(k+1,f(k+1))$ . Find the area between the graphs of $f$ and $g$.
2007 International Zhautykov Olympiad, 3
Let $ABCDEF$ be a convex hexagon and it`s diagonals have one common point $M$. It is known that the circumcenters of triangles $MAB,MBC,MCD,MDE,MEF,MFA$ lie on a circle.
Show that the quadrilaterals $ABDE,BCEF,CDFA$ have equal areas.
2009 Harvard-MIT Mathematics Tournament, 1
A rectangular piece of paper with side lengths 5 by 8 is folded along the dashed lines shown below, so that the folded flaps just touch at the corners as shown by the dotted lines. Find the area of the resulting trapezoid.
[asy]
size(150);
defaultpen(linewidth(0.8));
draw(origin--(8,0)--(8,5)--(0,5)--cycle,linewidth(1));
draw(origin--(8/3,5)^^(16/3,5)--(8,0),linetype("4 4"));
draw(origin--(4,3)--(8,0)^^(8/3,5)--(4,3)--(16/3,5),linetype("0 4"));
label("$5$",(0,5/2),W);
label("$8$",(4,0),S);
[/asy]