This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 405

2003 Federal Math Competition of S&M, Problem 3

Tags: geometry , triangle
Let $a,b$ and $c$ be the lengths of the edges of a triangle whose angles are $\alpha=40^\circ,\beta=60^\circ$ and $\gamma=80^\circ$. Prove that $$a(a+b+c)=b(b+c).$$

1992 Yugoslav Team Selection Test, Problem 1

Tags: geometry , triangle
Three squares $BCDE,CAFG$ and $ABHI$ are constructed outside the triangle $ABC$. Let $GCDQ$ and $EBHP$ be parallelograms. Prove that $APQ$ is an isosceles right triangle.

2007 France Team Selection Test, 3

A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.

1991 IMO Shortlist, 4

Let $ \,ABC\,$ be a triangle and $ \,P\,$ an interior point of $ \,ABC\,$. Show that at least one of the angles $ \,\angle PAB,\;\angle PBC,\;\angle PCA\,$ is less than or equal to $ 30^{\circ }$.

1973 IMO, 1

A soldier needs to check if there are any mines in the interior or on the sides of an equilateral triangle $ABC.$ His detector can detect a mine at a maximum distance equal to half the height of the triangle. The soldier leaves from one of the vertices of the triangle. Which is the minimum distance that he needs to traverse so that at the end of it he is sure that he completed successfully his mission?

2018 Pan-African Shortlist, G2

Let $P$ be a point on the median $AM$ of a triangle $ABC$. Suppose that the tangents to the circumcircles of $ABP$ and $ACP$ at $B$ and $C$ respectively meet at $Q$. Show that $\angle PAB = \angle CAQ$.

2000 Belarus Team Selection Test, 7.2

Given a triangle $ABC$. The points $A$, $B$, $C$ divide the circumcircle $\Omega$ of the triangle $ABC$ into three arcs $BC$, $CA$, $AB$. Let $X$ be a variable point on the arc $AB$, and let $O_{1}$ and $O_{2}$ be the incenters of the triangles $CAX$ and $CBX$. Prove that the circumcircle of the triangle $XO_{1}O_{2}$ intersects the circle $\Omega$ in a fixed point.

2020 Malaysia IMONST 1, 18

In a triangle, the ratio of the interior angles is $1 : 5 : 6$, and the longest side has length $12$. What is the length of the altitude (height) of the triangle that is perpendicular to the longest side?

Russian TST 2020, P2

Tags: geometry , triangle
Let $P$ be a point inside triangle $ABC$. Let $AP$ meet $BC$ at $A_1$, let $BP$ meet $CA$ at $B_1$, and let $CP$ meet $AB$ at $C_1$. Let $A_2$ be the point such that $A_1$ is the midpoint of $PA_2$, let $B_2$ be the point such that $B_1$ is the midpoint of $PB_2$, and let $C_2$ be the point such that $C_1$ is the midpoint of $PC_2$. Prove that points $A_2, B_2$, and $C_2$ cannot all lie strictly inside the circumcircle of triangle $ABC$. (Australia)

1997 Estonia National Olympiad, 2

Tags: geometry , angle , triangle
Side lengths $a,b,c$ of a triangle satisfy $\frac{a^3+b^3+c^3}{a+b+c}= c^2$. Find the measure of the angle opposite to side $c$.

2015 IMO Shortlist, G2

Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$. Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$. [i]Proposed by Greece[/i]

1981 Czech and Slovak Olympiad III A, 3

Let $ABCD$ be a unit square. Consider an equilateral triangle $XYZ$ with $X,Y$ as (inner or boundary) points of the square. Determine the locus $M$ of vertices $Z$ of all these triangles $XYZ$ and compute the area of $M.$

1969 IMO Shortlist, 21

$(FRA 4)$ A right-angled triangle $OAB$ has its right angle at the point $B.$ An arbitrary circle with center on the line $OB$ is tangent to the line $OA.$ Let $AT$ be the tangent to the circle different from $OA$ ($T$ is the point of tangency). Prove that the median from $B$ of the triangle $OAB$ intersects $AT$ at a point $M$ such that $MB = MT.$

1969 Swedish Mathematical Competition, 6

Given $3n$ points in the plane, no three collinear, is it always possible to form $n$ triangles (with vertices at the points), so that no point in the plane lies in more than one triangle?

2022 AMC 10, 13

Tags: triangle , geometry
Let $\triangle ABC$ be a scalene triangle. Point $P$ lies on $\overline{BC}$ so that $\overline{AP}$ bisects $\angle BAC$. The line through $B$ perpendicular to $\overline{AP}$ intersects the line through $A$ parallel to $\overline{BC}$ at point $D$. Suppose $BP = 2$ and $PC = 3$. What is $AD$ ? $\textbf{(A) }8\qquad\textbf{(B) }9\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12$

1985 IMO Shortlist, 16

If possible, construct an equilateral triangle whose three vertices are on three given circles.

1996 IMO Shortlist, 7

Let $ABC$ be an acute triangle with circumcenter $O$ and circumradius $R$. $AO$ meets the circumcircle of $BOC$ at $A'$, $BO$ meets the circumcircle of $COA$ at $B'$ and $CO$ meets the circumcircle of $AOB$ at $C'$. Prove that \[OA'\cdot OB'\cdot OC'\geq 8R^{3}.\] Sorry if this has been posted before since this is a very classical problem, but I failed to find it with the search-function.

1965 Bulgaria National Olympiad, Problem 3

In the triangle $ABC$, angle bisector $CD$ intersects the circumcircle of $ABC$ at the point $K$. (a) Prove the equalities: $$\frac1{ID}-\frac1{IK}=\frac1{CI},\enspace\frac{CI}{ID}-\frac{ID}{DK}=1$$where $I$ is the center of the inscribed circle of triangle $ABC$. (b) On the segment $CK$ some point $P$ is chosen whose projections on $AC,BC,AB$ respectively are $P_1,P_2,P_3$. The lines $PP_3$ and $P_1P_2$ intersect at a point $M$. Find the locus of $M$ when $P$ moves around segment $CK$.

1970 IMO Longlists, 58

Given $100$ coplanar points, no three collinear, prove that at most $70\%$ of the triangles formed by the points have all angles acute.

2002 India IMO Training Camp, 19

Let $ABC$ be an acute triangle. Let $DAC,EAB$, and $FBC$ be isosceles triangles exterior to $ABC$, with $DA=DC, EA=EB$, and $FB=FC$, such that \[ \angle ADC = 2\angle BAC, \quad \angle BEA= 2 \angle ABC, \quad \angle CFB = 2 \angle ACB. \] Let $D'$ be the intersection of lines $DB$ and $EF$, let $E'$ be the intersection of $EC$ and $DF$, and let $F'$ be the intersection of $FA$ and $DE$. Find, with proof, the value of the sum \[ \frac{DB}{DD'}+\frac{EC}{EE'}+\frac{FA}{FF'}. \]

1982 IMO Shortlist, 13

A non-isosceles triangle $A_{1}A_{2}A_{3}$ has sides $a_{1}$, $a_{2}$, $a_{3}$ with the side $a_{i}$ lying opposite to the vertex $A_{i}$. Let $M_{i}$ be the midpoint of the side $a_{i}$, and let $T_{i}$ be the point where the inscribed circle of triangle $A_{1}A_{2}A_{3}$ touches the side $a_{i}$. Denote by $S_{i}$ the reflection of the point $T_{i}$ in the interior angle bisector of the angle $A_{i}$. Prove that the lines $M_{1}S_{1}$, $M_{2}S_{2}$ and $M_{3}S_{3}$ are concurrent.

2009 Serbia National Math Olympiad, 1

Tags: geometry , triangle
In a scalene triangle $ABC$, $\alpha$ and $\beta$ respectively denote the interior angles at vertixes $A$ and $B$. The bisectors of these two angles meet the opposite sides of the triangle at points $D$ and $E$, respectively. Prove that the acute angle between the lines $DE$ and $AB$ does not exceed $ \frac{ | \alpha - \beta |}{3}$ . [i]Proposed by Dusan Djukic[/i]

2018 Bangladesh Mathematical Olympiad, 2

BdMO National 2018 Higher Secondary P2 $AB$ is a diameter of a circle and $AD$ & $BC$ are two tangents of that circle.$AC$ & $BD$ intersect on a point of the circle.$AD=a$ & $BC=b$.If $a\neq b$ then $AB=?$

2017 Junior Regional Olympiad - FBH, 3

Tags: angle , triangle , compare
In acute triangle $ABC$ holds $\angle BAC=80^{\circ}$, and altitudes $h_a$ and $h_b$ intersect in point $H$. if $\angle AHB = 126^{\circ}$, which side is the smallest, and which is the biggest in $ABC$

1987 Bulgaria National Olympiad, Problem 6

Let $\Delta$ be the set of all triangles inscribed in a given circle, with angles whose measures are integer numbers of degrees different than $45^\circ,90^\circ$ and $135^\circ$. For each triangle $T\in\Delta$, $f(T)$ denotes the triangle with vertices at the second intersection points of the altitudes of $T$ with the circle. (a) Prove that there exists a natural number $n$ such that for every triangle $T\in\Delta$, among the triangles $T,f(T),\ldots,f^n(T)$ (where $f^0(T)=T$ and $f^k(T)=f(f^{k-1}(T))$) at least two are equal. (b) Find the smallest $n$ with the property from (a).