This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2008 Moldova Team Selection Test, 3

In triangle $ ABC$ the bisector of $ \angle ACB$ intersects $ AB$ at $ D$. Consider an arbitrary circle $ O$ passing through $ C$ and $ D$, so that it is not tangent to $ BC$ or $ CA$. Let $ O\cap BC \equal{} \{M\}$ and $ O\cap CA \equal{} \{N\}$. a) Prove that there is a circle $ S$ so that $ DM$ and $ DN$ are tangent to $ S$ in $ M$ and $ N$, respectively. b) Circle $ S$ intersects lines $ BC$ and $ CA$ in $ P$ and $ Q$ respectively. Prove that the lengths of $ MP$ and $ NQ$ do not depend on the choice of circle $ O$.

2011 Kosovo National Mathematical Olympiad, 4

A point $P$ is given in the square $ABCD$ such that $\overline{PA}=3$, $\overline{PB}=7$ and $\overline{PD}=5$. Find the area of the square.

2007 China Team Selection Test, 1

$ u,v,w > 0$,such that $ u \plus{} v \plus{} w \plus{} \sqrt {uvw} \equal{} 4$ prove that $ \sqrt {\frac {uv}{w}} \plus{} \sqrt {\frac {vw}{u}} \plus{} \sqrt {\frac {wu}{v}}\geq u \plus{} v \plus{} w$

2002 India IMO Training Camp, 19

Let $ABC$ be an acute triangle. Let $DAC,EAB$, and $FBC$ be isosceles triangles exterior to $ABC$, with $DA=DC, EA=EB$, and $FB=FC$, such that \[ \angle ADC = 2\angle BAC, \quad \angle BEA= 2 \angle ABC, \quad \angle CFB = 2 \angle ACB. \] Let $D'$ be the intersection of lines $DB$ and $EF$, let $E'$ be the intersection of $EC$ and $DF$, and let $F'$ be the intersection of $FA$ and $DE$. Find, with proof, the value of the sum \[ \frac{DB}{DD'}+\frac{EC}{EE'}+\frac{FA}{FF'}. \]

2007 Today's Calculation Of Integral, 250

For a positive constant number $ p$, find $ \lim_{n\to\infty} \frac {1}{n^{p \plus{} 1}}\sum_{k \equal{} 0}^{n \minus{} 1} \int_{2k\pi}^{(2k \plus{} 1)\pi} x^p\sin ^ 3 x\cos ^ 2x\ dx.$

1986 AIME Problems, 15

Let triangle $ABC$ be a right triangle in the xy-plane with a right angle at $C$. Given that the length of the hypotenuse $AB$ is 60, and that the medians through $A$ and $B$ lie along the lines $y=x+3$ and $y=2x+4$ respectively, find the area of triangle $ABC$.

2005 Taiwan National Olympiad, 2

Given a line segment $AB=7$, $C$ is constructed on $AB$ so that $AC=5$. Two equilateral triangles are constructed on the same side of $AB$ with $AC$ and $BC$ as a side. Find the length of the segment connecting their two circumcenters.

1999 Baltic Way, 4

For all positive real numbers $x$ and $y$ let \[f(x,y)=\min\left( x,\frac{y}{x^2+y^2}\right) \] Show that there exist $x_0$ and $y_0$ such that $f(x, y)\le f(x_0, y_0)$ for all positive $x$ and $y$, and find $f(x_0,y_0)$.

2007 ISI B.Stat Entrance Exam, 2

Use calculus to find the behaviour of the function \[y=e^x\sin{x} \ \ \ \ \ \ \ -\infty <x< +\infty\] and sketch the graph of the function for $-2\pi \le x \le 2\pi$. Show clearly the locations of the maxima, minima and points of inflection in your graph.

2008 Bulgaria Team Selection Test, 2

In the triangle $ABC$, $AM$ is median, $M \in BC$, $BB_{1}$ and $CC_{1}$ are altitudes, $C_{1} \in AB$, $B_{1} \in AC$. The line through $A$ which is perpendicular to $AM$ cuts the lines $BB_{1}$ and $CC_{1}$ at points $E$ and $F$, respectively. Let $k$ be the circumcircle of $\triangle EFM$. Suppose also that $k_{1}$ and $k_{2}$ are circles touching both $EF$ and the arc $EF$ of $k$ which does not contain $M$. If $P$ and $Q$ are the points at which $k_{1}$ intersects $k_{2}$, prove that $P$, $Q$, and $M$ are collinear.

2014 AIME Problems, 10

A disk with radius $1$ is externally tangent to a disk with radius $5$. Let $A$ be the point where the disks are tangent, $C$ be the center of the smaller disk, and $E$ be the center of the larger disk. While the larger disk remains fixed, the smaller disk is allowed to roll along the outside of the larger disk until the smaller disk has turned through an angle of $360^\circ$. That is, if the center of the smaller disk has moved to the point $D$, and the point on the smaller disk that began at $A$ has now moved to point $B$, then $\overline{AC}$ is parallel to $\overline{BD}$. Then $\sin^2(\angle BEA)=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2011 IberoAmerican, 1

Let $ABC$ be an acute-angled triangle, with $AC \neq BC$ and let $O$ be its circumcenter. Let $P$ and $Q$ be points such that $BOAP$ and $COPQ$ are parallelograms. Show that $Q$ is the orthocenter of $ABC$.

PEN F Problems, 3

Let $ \alpha$ be a rational number with $ 0 < \alpha < 1$ and $ \cos (3 \pi \alpha) \plus{} 2\cos(2 \pi \alpha) \equal{} 0$. Prove that $ \alpha \equal{} \frac {2}{3}$.

2006 All-Russian Olympiad Regional Round, 10.5

Prove that for every $x$ such that $\sin x \ne 0$, there is such natural $n$, which $$ | \sin nx| \ge \frac{\sqrt3}{2}.$$

2005 Today's Calculation Of Integral, 42

Let $0<t<\frac{\pi}{2}$. Evaluate \[\lim_{t\rightarrow \frac{\pi}{2}} \int_0^t \tan \theta \sqrt{\cos \theta}\ln (\cos \theta)d\theta\]

MBMT Team Rounds, 2020.39

Tags: trigonometry
Let $f(x) = \sqrt{4x^2 - 4x^4}$. Let $A$ be the number of real numbers $x$ that satisfy $$f(f(f(\dots f(x)\dots ))) = x,$$ where the function $f$ is applied to $x$ 2020 times. Compute $A \pmod {1000}$. [i]Proposed by Timothy Qian[/i]

1967 IMO, 1

The parallelogram $ABCD$ has $AB=a,AD=1,$ $\angle BAD=A$, and the triangle $ABD$ has all angles acute. Prove that circles radius $1$ and center $A,B,C,D$ cover the parallelogram if and only \[a\le\cos A+\sqrt3\sin A.\]

2013 Serbia National Math Olympiad, 5

Let $A'$ and $B'$ be feet of altitudes from $A$ and $B$, respectively, in acute-angled triangle $ABC$ ($AC\not = BC$). Circle $k$ contains points $A'$ and $B'$ and touches segment $AB$ in $D$. If triangles $ADA'$ and $BDB'$ have the same area, prove that \[\angle A'DB'= \angle ACB.\]

2010 All-Russian Olympiad Regional Round, 11.5

The angles of the triangle $\alpha, \beta, \gamma$ satisfy the inequalities $$\sin \alpha > \cos \beta, \sin \beta > \cos \gamma, \sin \gamma > \cos \alpha. $$Prove that the trαiangle is acute-angled.

1960 IMO Shortlist, 6

Consider a cone of revolution with an inscribed sphere tangent to the base of the cone. A cylinder is circumscribed about this sphere so that one of its bases lies in the base of the cone. let $V_1$ be the volume of the cone and $V_2$ be the volume of the cylinder. a) Prove that $V_1 \neq V_2$; b) Find the smallest number $k$ for which $V_1=kV_2$; for this case, construct the angle subtended by a diamter of the base of the cone at the vertex of the cone.

2009 Turkey Team Selection Test, 2

Quadrilateral $ ABCD$ has an inscribed circle which centered at $ O$ with radius $ r$. $ AB$ intersects $ CD$ at $ P$; $ AD$ intersects $ BC$ at $ Q$ and the diagonals $ AC$ and $ BD$ intersects each other at $ K$. If the distance from $ O$ to the line $ PQ$ is $ k$, prove that $ OK\cdot\ k \equal{} r^2$.

2009 Sharygin Geometry Olympiad, 22

Construct a quadrilateral which is inscribed and circumscribed, given the radii of the respective circles and the angle between the diagonals of quadrilateral.

2011 CentroAmerican, 6

Let $ABC$ be an acute triangle and $D$, $E$, $F$ be the feet of the altitudes through $A$, $B$, $C$ respectively. Call $Y$ and $Z$ the feet of the perpendicular lines from $B$ and $C$ to $FD$ and $DE$, respectively. Let $F_1$ be the symmetric of $F$ with respect to $E$ and $E_1$ be the symmetric of $E$ with respect to $F$. If $3EF=FD+DE$, prove that $\angle BZF_1=\angle CYE_1$.

1996 AIME Problems, 13

In triangle $ABC, AB=\sqrt{30}, AC=\sqrt{6},$ and $BC=\sqrt{15}.$ There is a point $D$ for which $\overline{AD}$ bisects $\overline{BC}$ and $\angle ADB$ is a right angle. The ratio \[ \frac{\text{Area}(\triangle ADB)}{\text{Area}(\triangle ABC)} \] can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

1970 Putnam, A1

Show that the power series for the function $$e^{ax} \cos bx,$$ where $a,b >0$, has either no zero coefficients or infinitely many zero coefficients.