This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

1980 All Soviet Union Mathematical Olympiad, 302

The edge $[AC]$ of the tetrahedron $ABCD$ is orthogonal to $[BC]$, and $[AD]$ is orthogonal to $[BD]$. Prove that the cosine of the angle between lines $(AC)$ and $(BD)$ is less than $|CD|/|AB|$.

2010 Korea - Final Round, 1

Given an arbitrary triangle $ ABC$, denote by $ P,Q,R$ the intersections of the incircle with sides $ BC, CA, AB$ respectively. Let the area of triangle $ ABC$ be $ T$, and its perimeter $ L$. Prove that the inequality \[\left(\frac {AB}{PQ}\right)^3 \plus{}\left(\frac {BC}{QR}\right)^3 \plus{}\left(\frac {CA}{RP}\right)^3 \geq \frac {2}{\sqrt {3}} \cdot \frac {L^2}{T}\] holds.

1999 South africa National Olympiad, 3

The bisector of $\angle{BAD}$ in the parallellogram $ABCD$ intersects the lines $BC$ and $CD$ at the points $K$ and $L$ respectively. Prove that the centre of the circle passing through the points $C,\ K$ and $L$ lies on the circle passing through the points $B,\ C$ and $D$.

2006 Taiwan TST Round 1, 2

Let $P$ be a point on the plane. Three nonoverlapping equilateral triangles $PA_1A_2$, $PA_3A_4$, $PA_5A_6$ are constructed in a clockwise manner. The midpoints of $A_2A_3$, $A_4A_5$, $A_6A_1$ are $L$, $M$, $N$, respectively. Prove that triangle $LMN$ is equilateral.

JBMO Geometry Collection, 2001

Let $ABC$ be a triangle with $\angle C = 90^\circ$ and $CA \neq CB$. Let $CH$ be an altitude and $CL$ be an interior angle bisector. Show that for $X \neq C$ on the line $CL$, we have $\angle XAC \neq \angle XBC$. Also show that for $Y \neq C$ on the line $CH$ we have $\angle YAC \neq \angle YBC$. [i]Bulgaria[/i]

2013 Vietnam National Olympiad, 1

Solve with full solution: \[\left\{\begin{matrix}\sqrt{(\sin x)^2+\frac{1}{(\sin x)^2}}+\sqrt{(\cos y)^2+\frac{1}{(\cos y)^2}}=\sqrt\frac{20y}{x+y} \\\sqrt{(\sin y)^2+\frac{1}{(\sin y)^2}}+\sqrt{(\cos x)^2+\frac{1}{(\cos x)^2}}=\sqrt\frac{20x}{x+y}\end{matrix}\right. \]

2007 Germany Team Selection Test, 3

Let $ ABC$ be a triangle and $ P$ an arbitrary point in the plane. Let $ \alpha, \beta, \gamma$ be interior angles of the triangle and its area is denoted by $ F.$ Prove: \[ \ov{AP}^2 \cdot \sin 2\alpha + \ov{BP}^2 \cdot \sin 2\beta + \ov{CP}^2 \cdot \sin 2\gamma \geq 2F \] When does equality occur?

2005 Junior Balkan Team Selection Tests - Romania, 14

Let $a,b,c$ be three positive real numbers with $a+b+c=3$. Prove that \[ (3-2a)(3-2b)(3-2c) \leq a^2b^2c^2 . \] [i]Robert Szasz[/i]

1994 IMO Shortlist, 5

A circle $ C$ with center $ O.$ and a line $ L$ which does not touch circle $ C.$ $ OQ$ is perpendicular to $ L,$ $ Q$ is on $ L.$ $ P$ is on $ L,$ draw two tangents $ L_1, L_2$ to circle $ C.$ $ QA, QB$ are perpendicular to $ L_1, L_2$ respectively. ($ A$ on $ L_1,$ $ B$ on $ L_2$). Prove that, line $ AB$ intersect $ QO$ at a fixed point. [i]Original formulation:[/i] A line $ l$ does not meet a circle $ \omega$ with center $ O.$ $ E$ is the point on $ l$ such that $ OE$ is perpendicular to $ l.$ $ M$ is any point on $ l$ other than $ E.$ The tangents from $ M$ to $ \omega$ touch it at $ A$ and $ B.$ $ C$ is the point on $ MA$ such that $ EC$ is perpendicular to $ MA.$ $ D$ is the point on $ MB$ such that $ ED$ is perpendicular to $ MB.$ The line $ CD$ cuts $ OE$ at $ F.$ Prove that the location of $ F$ is independent of that of $ M.$

2002 India IMO Training Camp, 19

Let $ABC$ be an acute triangle. Let $DAC,EAB$, and $FBC$ be isosceles triangles exterior to $ABC$, with $DA=DC, EA=EB$, and $FB=FC$, such that \[ \angle ADC = 2\angle BAC, \quad \angle BEA= 2 \angle ABC, \quad \angle CFB = 2 \angle ACB. \] Let $D'$ be the intersection of lines $DB$ and $EF$, let $E'$ be the intersection of $EC$ and $DF$, and let $F'$ be the intersection of $FA$ and $DE$. Find, with proof, the value of the sum \[ \frac{DB}{DD'}+\frac{EC}{EE'}+\frac{FA}{FF'}. \]

2013 Balkan MO, 1

In a triangle $ABC$, the excircle $\omega_a$ opposite $A$ touches $AB$ at $P$ and $AC$ at $Q$, while the excircle $\omega_b$ opposite $B$ touches $BA$ at $M$ and $BC$ at $N$. Let $K$ be the projection of $C$ onto $MN$ and let $L$ be the projection of $C$ onto $PQ$. Show that the quadrilateral $MKLP$ is cyclic. ([i]Bulgaria[/i])

Today's calculation of integrals, 881

Evaluate $\int_{-\pi}^{\pi} \left(\sum_{k=1}^{2013} \sin kx\right)^2dx$.

2013 Princeton University Math Competition, 6

Suppose the function $\psi$ satisfies $\psi(1)=\sqrt{2+\sqrt{2+\sqrt2}}$ and $\psi(3x)+3\psi(x)=\psi(x)^3$ for all real $x$. Determine the greatest integer less than $\textstyle\prod_{n=1}^{100}\psi(3^n)$.

2010 Brazil National Olympiad, 3

What is the biggest shadow that a cube of side length $1$ can have, with the sun at its peak? Note: "The biggest shadow of a figure with the sun at its peak" is understood to be the biggest possible area of the orthogonal projection of the figure on a plane.

2023 All-Russian Olympiad, 1

If $x\in\mathbb{R}$ satisfy $sin$ $x+tan$ $x\in\mathbb{Q}$, $cos$ $x+cot$ $x\in\mathbb{Q}$ Prove that $sin$ $2x$ is a root of an integral coefficient quadratic function

2013 Iran Team Selection Test, 1

In acute-angled triangle $ABC$, let $H$ be the foot of perpendicular from $A$ to $BC$ and also suppose that $J$ and $I$ are excenters oposite to the side $AH$ in triangles $ABH$ and $ACH$. If $P$ is the point that incircle touches $BC$, prove that $I,J,P,H$ are concyclic.

2009 AIME Problems, 14

The sequence $ (a_n)$ satisfies $ a_0 \equal{} 0$ and $ \displaystyle a_{n \plus{} 1} \equal{} \frac85a_n \plus{} \frac65\sqrt {4^n \minus{} a_n^2}$ for $ n\ge0$. Find the greatest integer less than or equal to $ a_{10}$.

1967 IMO Shortlist, 5

If $x,y,z$ are real numbers satisfying relations \[x+y+z = 1 \quad \textrm{and} \quad \arctan x + \arctan y + \arctan z = \frac{\pi}{4},\] prove that $x^{2n+1} + y^{2n+1} + z^{2n+1} = 1$ holds for all positive integers $n$.

2003 China Team Selection Test, 3

(1) $D$ is an arbitary point in $\triangle{ABC}$. Prove that: \[ \frac{BC}{\min{AD,BD,CD}} \geq \{ \begin{array}{c} \displaystyle 2\sin{A}, \ \angle{A}< 90^o \\ \\ 2, \ \angle{A} \geq 90^o \end{array} \] (2)$E$ is an arbitary point in convex quadrilateral $ABCD$. Denote $k$ the ratio of the largest and least distances of any two points among $A$, $B$, $C$, $D$, $E$. Prove that $k \geq 2\sin{70^o}$. Can equality be achieved?

2012 Sharygin Geometry Olympiad, 6

Point $C_{1}$ of hypothenuse $AC$ of a right-angled triangle $ABC$ is such that $BC = CC_{1}$. Point $C_{2}$ on cathetus $AB$ is such that $AC_{2} = AC_{1}$; point $A_{2}$ is defined similarly. Find angle $AMC$, where $M$ is the midpoint of $A_{2}C_{2}$.

2021 AMC 12/AHSME Fall, 19

Tags: trigonometry
Let $x$ be the least real number greater than $1$ such that $\sin(x)$ = $\sin(x^2)$, where the arguments are in degrees. What is $x$ rounded up to the closest integer? $\textbf{(A) } 10 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 14 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 20$

2005 South East Mathematical Olympiad, 5

Line $l$ tangents unit circle $S$ in point $P$. Point $A$ and circle $S$ are on the same side of $l$, and the distance from $A$ to $l$ is $h$ ($h > 2$). Two tangents of circle $S$ are drawn from $A$, and intersect line $l$ at points $B$ and $C$ respectively. Find the value of $PB \cdot PC$.

2013 Stanford Mathematics Tournament, 3

Suppose $a$ and $b$ are real numbers such that \[\lim_{x\to 0}\frac{\sin^2 x}{e^{ax}-bx-1}=\frac{1}{2}.\] Determine all possible ordered pairs $(a, b)$.

2004 Romania National Olympiad, 3

Let $H$ be the orthocenter of the acute triangle $ABC$. Let $BB'$ and $CC'$ be altitudes of the triangle ($B^{\prime} \in AC$, $C^{\prime} \in AB$). A variable line $\ell$ passing through $H$ intersects the segments $[BC']$ and $[CB']$ in $M$ and $N$. The perpendicular lines of $\ell$ from $M$ and $N$ intersect $BB'$ and $CC'$ in $P$ and $Q$. Determine the locus of the midpoint of the segment $[ PQ]$. [i]Gheorghe Szolosy[/i]

2008 Harvard-MIT Mathematics Tournament, 19

Let $ ABCD$ be a regular tetrahedron, and let $ O$ be the centroid of triangle $ BCD$. Consider the point $ P$ on $ AO$ such that $ P$ minimizes $ PA \plus{} 2(PB \plus{} PC \plus{} PD)$. Find $ \sin \angle PBO$.