This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

1978 AMC 12/AHSME, 15

If $\sin x+\cos x=1/5$ and $0\le x<\pi$, then $\tan x$ is $\textbf{(A) }-\frac{4}{3}\qquad\textbf{(B) }-\frac{3}{4}\qquad\textbf{(C) }\frac{3}{4}\qquad\textbf{(D) }\frac{4}{3}\qquad$ $\textbf{(E) }\text{not completely determined by the given information}$

2009 Today's Calculation Of Integral, 429

Find the length of the curve expressed by the polar equation: $ r\equal{}1\plus{}\cos \theta \ (0\leq \theta \leq \pi)$.

2010 Laurențiu Panaitopol, Tulcea, 4

Let be a natural number $ n, $ and $ n $ real numbers $ a_1,a_2,\ldots ,a_n . $ Then, $$ \sum_{1\le i<j\le n} \cos\left( a_i-a_j \right)\ge -n/2. $$

1986 Vietnam National Olympiad, 2

Let $ R$, $ r$ be respectively the circumradius and inradius of a regular $ 1986$-gonal pyramid. Prove that \[ \frac{R}{r}\ge 1\plus{}\frac{1}{\cos\frac{\pi}{1986}}\] and find the total area of the surface of the pyramid when the equality occurs.

2007 Today's Calculation Of Integral, 185

Evaluate the following integrals. (1) $\int_{0}^{\frac{\pi}{4}}\frac{dx}{1+\sin x}.$ (2) $\int_{\frac{4}{3}}^{2}\frac{dx}{x^{2}\sqrt{x-1}}.$

2019 Jozsef Wildt International Math Competition, W. 14

If $a$, $b$, $c > 0$; $ab + bc + ca = 3$ then: $$4\left(\tan^{-1} 2\right)\left(\tan^{-1}\left(\sqrt[3]{abc}\right)\right) \leq \pi \tan^{-1}\left(1 + \sqrt[3]{abc}\right)$$

2005 National High School Mathematics League, 3

$\triangle ABC$ is inscribed to unit circle. Bisector of $\angle A,\angle B,\angle C$ intersect the circle at $A_1,B_1,C_1$ respectively. The value of $\frac{\displaystyle AA_1\cdot\cos\frac{A}{2}+BB_1\cdot\cos\frac{B}{2}+CC_1\cdot\cos\frac{C}{2}}{\sin A+\sin B+\sin C}$ is $\text{(A)}2\qquad\text{(B)}4\qquad\text{(C)}6\qquad\text{(D)}8$

2002 National Olympiad First Round, 21

Let $A_1A_2 \cdots A_{10}$ be a regular decagon such that $[A_1A_4]=b$ and the length of the circumradius is $R$. What is the length of a side of the decagon? $ \textbf{a)}\ b-R \qquad\textbf{b)}\ b^2-R^2 \qquad\textbf{c)}\ R+\dfrac b2 \qquad\textbf{d)}\ b-2R \qquad\textbf{e)}\ 2b-3R $

2013 Bulgaria National Olympiad, 4

Suppose $\alpha,\beta,\gamma \in [0.\pi/2)$ and $\tan \alpha + \tan\beta + \tan \gamma \leq 3$. Prove that: \[\cos 2\alpha + \cos 2\beta + \cos 2\gamma \ge 0\] [i]Proposed by Nikolay Nikolov[/i]

2009 District Round (Round II), 2

in a right-angled triangle $ABC$ with $\angle C=90$,$a,b,c$ are the corresponding sides.Circles $K.L$ have their centers on $a,b$ and are tangent to $b,c$;$a,c$ respectively,with radii $r,t$.find the greatest real number $p$ such that the inequality $\frac{1}{r}+\frac{1}{t}\ge p(\frac{1}{a}+\frac{1}{b})$ always holds.

1977 IMO Longlists, 20

Let $a,b,A,B$ be given reals. We consider the function defined by \[ f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). \] Prove that if for any real number $x$ we have $f(x) \geq 0$ then $a^2 + b^2 \leq 2$ and $A^2 + B^2 \leq 1.$

2003 AMC 12-AHSME, 21

An object moves $ 8$ cm in a straight line from $ A$ to $ B$, turns at an angle $ \alpha$, measured in radians and chosen at random from the interval $ (0,\pi)$, and moves $ 5$ cm in a straight line to $ C$. What is the probability that $ AC<7$? $ \textbf{(A)}\ \frac{1}{6} \qquad \textbf{(B)}\ \frac{1}{5} \qquad \textbf{(C)}\ \frac{1}{4} \qquad \textbf{(D)}\ \frac{1}{3} \qquad \textbf{(E)}\ \frac{1}{2}$

2014 India IMO Training Camp, 1

In a triangle $ABC$, let $I$ be its incenter; $Q$ the point at which the incircle touches the line $AC$; $E$ the midpoint of $AC$ and $K$ the orthocenter of triangle $BIC$. Prove that the line $KQ$ is perpendicular to the line $IE$.

2014 NIMO Problems, 8

Triangle $ABC$ lies entirely in the first quadrant of the Cartesian plane, and its sides have slopes $63$, $73$, $97$. Suppose the curve $\mathcal V$ with equation $y=(x+3)(x^2+3)$ passes through the vertices of $ABC$. Find the sum of the slopes of the three tangents to $\mathcal V$ at each of $A$, $B$, $C$. [i]Proposed by Akshaj[/i]

1988 All Soviet Union Mathematical Olympiad, 484

What is the smallest $n$ for which there is a solution to $$\begin{cases} \sin x_1 + \sin x_2 + ... + \sin x_n = 0 \\ \sin x_1 + 2 \sin x_2 + ... + n \sin x_n = 100 \end{cases}$$ ?

2019 Jozsef Wildt International Math Competition, W. 70

If $x \in \left(0,\frac{\pi}{2}\right)$ then$$\left(\frac{\sin \left(\frac{\pi}{2}\sin x\right)}{\sin x}\right)^2+\left(\frac{\sin \left(\frac{\pi}{2}\cos x\right)}{\cos x}\right)^2\geq 3$$

2007 National Olympiad First Round, 13

Let $ABCD$ be an circumscribed quadrilateral such that $m(\widehat{A})=m(\widehat{B})=120^\circ$, $m(\widehat{C})=30^\circ$, and $|BC|=2$. What is $|AD|$? $ \textbf{(A)}\ \sqrt 3 - 1 \qquad\textbf{(B)}\ \sqrt 2 - 3 \qquad\textbf{(C)}\ \sqrt 6 - \sqrt 2 \qquad\textbf{(D)}\ 2 - \sqrt 2 \qquad\textbf{(E)}\ 3 - \sqrt 3 $

2010 Contests, 2

Let $ABC$ be an acute triangle, $H$ its orthocentre, $D$ a point on the side $[BC]$, and $P$ a point such that $ADPH$ is a parallelogram. Show that $\angle BPC > \angle BAC$.

2014 IPhOO, 10

An electric field varies according the the relationship, \[ \textbf{E} = \left( 0.57 \, \dfrac{\text{N}}{\text{C}} \right) \cdot \sin \left[ \left( 1720 \, \text{s}^{-1} \right) \cdot t \right]. \]Find the maximum displacement current through a $ 1.0 \, \text{m}^2 $ area perpendicular to $\vec{\mathbf{E}}$. Assume the permittivity of free space to be $ 8.85 \times 10^{-12} \, \text{F}/\text{m} $. Round to two significant figures. [i]Problem proposed by Kimberly Geddes[/i]

2013 Today's Calculation Of Integral, 872

Let $n$ be a positive integer. (1) For a positive integer $k$ such that $1\leq k\leq n$, Show that : \[\int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt\cos t\ dt=(-1)^{k+1}\frac{2n}{4n^2-1}(\cos \frac{k}{2n}\pi +\cos \frac{k-1}{2n}\pi).\] (2) Find the area $S_n$ of the part expressed by a parameterized curve $C_n: x=\sin t,\ y=\sin 2nt\ (0\leq t\leq \pi).$ If necessary, you may use ${\sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi =\frac 12(\frac{1}{\tan \frac{\pi}{4n}}-1})\ (n\geq 2).$ (3) Find $\lim_{n\to\infty} S_n.$

2006 USA Team Selection Test, 2

In acute triangle $ABC$ , segments $AD; BE$ , and $CF$ are its altitudes, and $H$ is its orthocenter. Circle $\omega$, centered at $O$, passes through $A$ and $H$ and intersects sides $AB$ and $AC$ again at $Q$ and $P$ (other than $A$), respectively. The circumcircle of triangle $OPQ$ is tangent to segment $BC$ at $R$. Prove that $\frac{CR}{BR}=\frac{ED}{FD}.$

1962 IMO Shortlist, 6

Consider an isosceles triangle. let $R$ be the radius of its circumscribed circle and $r$ be the radius of its inscribed circle. Prove that the distance $d$ between the centers of these two circle is \[ d=\sqrt{R(R-2r)} \]

2014 Contests, 1

Let $ABCD$ be a convex quadrilateral. Diagonals $AC$ and $BD$ meet at point $P$. The inradii of triangles $ABP$, $BCP$, $CDP$ and $DAP$ are equal. Prove that $ABCD$ is a rhombus.

1950 AMC 12/AHSME, 49

A triangle has a fixed base $AB$ that is $2$ inches long. The median from $A$ to side $BC$ is $ 1\frac{1}{2}$ inches long and can have any position emanating from $A$. The locus of the vertex $C$ of the triangle is: $\textbf{(A)}\ \text{A straight line }AB,1\dfrac{1}{2}\text{ inches from }A \qquad\\ \textbf{(B)}\ \text{A circle with }A\text{ as center and radius }2\text{ inches} \qquad\\ \textbf{(C)}\ \text{A circle with }A\text{ as center and radius }3\text{ inches} \qquad\\ \textbf{(D)}\ \text{A circle with radius }3\text{ inches and center }4\text{ inches from }B\text{ along } BA \qquad\\ \textbf{(E)}\ \text{An ellipse with }A\text{ as focus}$

1993 Irish Math Olympiad, 4

Let $x$ be a real number with $0<x<\pi $.Prove that, for all natural number $n$ ,\[sinx+\frac{sin3x}{3}+\frac{sin5x}{5}+\cdots+\frac{sin(2n-1)x}{2n-1}>0.\]