Found problems: 560
1992 Polish MO Finals, 2
The base of a regular pyramid is a regular $2n$-gon $A_1A_2...A_{2n}$. A sphere passing through the top vertex $S$ of the pyramid cuts the edge $SA_i$ at $B_i$ (for $i = 1, 2, ... , 2n$). Show that $\sum\limits_{i=1}^n SB_{2i-1} = \sum\limits_{i=1}^n SB_{2i}$.
1979 IMO Shortlist, 10
Show that for any vectors $a, b$ in Euclidean space,
\[|a \times b|^3 \leq \frac{3 \sqrt 3}{8} |a|^2 |b|^2 |a-b|^2\]
Remark. Here $\times$ denotes the vector product.
2002 Miklós Schweitzer, 9
Let $M$ be a connected, compact $C^{\infty}$-differentiable manifold, and denote the vector space of smooth real functions on $M$ by $C^{\infty}(M)$. Let the subspace $V\le C^{\infty}(M)$ be invariant under $C^{\infty}$-diffeomorphisms of $M$, that is, let $f\circ h\in V$ for every $f\in V$ and for every $C^{\infty}$-diffeomorphism $h\colon M\rightarrow M$. Prove that if $V$ is different from the subspaces $\{ 0\}$ and $C^{\infty}(M)$ then $V$ only contains the constant functions.
2013 IMC, 1
Let $\displaystyle{A}$ and $\displaystyle{B}$ be real symmetric matrixes with all eigenvalues strictly greater than $\displaystyle{1}$. Let $\displaystyle{\lambda }$ be a real eigenvalue of matrix $\displaystyle{{\rm A}{\rm B}}$. Prove that $\displaystyle{\left| \lambda \right| > 1}$.
[i]Proposed by Pavel Kozhevnikov, MIPT, Moscow.[/i]
2014 Purple Comet Problems, 29
Consider the sequences of six positive integers $a_1,a_2,a_3,a_4,a_5,a_6$ with the properties that $a_1=1$, and if for some $j > 1$, $a_j = m > 1$, then $m-1$ appears in the sequence $a_1,a_2,\dots,a_{j-1}$. Such sequences include $1,1,2,1,3,2$ and $1,2,3,1,4,1$ but not $1,2,2,4,3,2$. How many such sequences of six positive integers are there?
2008 AIME Problems, 13
Let
\[ p(x,y) \equal{} a_0 \plus{} a_1x \plus{} a_2y \plus{} a_3x^2 \plus{} a_4xy \plus{} a_5y^2 \plus{} a_6x^3 \plus{} a_7x^2y \plus{} a_8xy^2 \plus{} a_9y^3.
\]Suppose that
\begin{align*}p(0,0) &\equal{} p(1,0) \equal{} p( \minus{} 1,0) \equal{} p(0,1) \equal{} p(0, \minus{} 1) \\&\equal{} p(1,1) \equal{} p(1, \minus{} 1) \equal{} p(2,2) \equal{} 0.\end{align*}
There is a point $ \left(\tfrac {a}{c},\tfrac {b}{c}\right)$ for which $ p\left(\tfrac {a}{c},\tfrac {b}{c}\right) \equal{} 0$ for all such polynomials, where $ a$, $ b$, and $ c$ are positive integers, $ a$ and $ c$ are relatively prime, and $ c > 1$. Find $ a \plus{} b \plus{} c$.
2004 USA Team Selection Test, 5
Let $A = (0, 0, 0)$ in 3D space. Define the [i]weight[/i] of a point as the sum of the absolute values of the coordinates. Call a point a [i]primitive lattice point[/i] if all of its coordinates are integers whose gcd is 1. Let square $ABCD$ be an [i]unbalanced primitive integer square[/i] if it has integer side length and also, $B$ and $D$ are primitive lattice points with different weights. Prove that there are infinitely many unbalanced primitive integer squares such that the planes containing the squares are not parallel to each other.
2001 Romania National Olympiad, 3
Let $n\in\mathbb{N}^*$ and $v_1,v_2,\ldots ,v_n$ be vectors in the plane with lengths less than or equal to $1$. Prove that there exists $\xi_1,\xi_2,\ldots ,\xi_n\in\{-1,1\}$ such that
\[ | \xi_1v_1+\xi_2v_2+\ldots +\xi_nv_n|\le\sqrt{2}\]
2022 VN Math Olympiad For High School Students, Problem 4
Assume that $\triangle ABC$ is acute. Let $a=BC, b=CA, c=AB$.
a) Denote $H$ by the orthocenter of $\triangle ABC$. Prove that:$$a.\frac{{\overrightarrow {HA} }}{{HA}} + b.\frac{{\overrightarrow {HB} }}{{HB}} + c.\frac{{\overrightarrow {HC} }}{{HC}} = \overrightarrow 0 .$$
b) Consider a point $P$ lying on the plane. Prove that the sum:$$aPa+bPB+cPC$$ get its minimum value iff $P\equiv H$.
2009 Sharygin Geometry Olympiad, 7
Given points $O, A_1, A_2, ..., A_n$ on the plane. For any two of these points the square of distance between them is natural number. Prove that there exist two vectors $\vec{x}$ and $\vec{y}$, such that for any point $A_i$, $\vec{OA_i }= k\vec{x}+l \vec{y}$, where $k$ and $l$ are some integer numbers.
(A.Glazyrin)
1991 Arnold's Trivium, 12
Find the flux of the vector field $\overrightarrow{r}/r^3$ through the surface
\[(x-1)^2+y^2+z^2=2\]
1996 Brazil National Olympiad, 4
$ABC$ is acute-angled. $D$ s a variable point on the side BC. $O_1$ is the circumcenter of $ABD$, $O_2$ is the circumcenter of $ACD$, and $O$ is the circumcenter of $AO_1O_2$. Find the locus of $O$.
2013 IPhOO, 1
A block of mass $m$ on a frictionless inclined plane of angle $\theta$ is connected by a cord over a small frictionless, massless pulley to a second block of mass $M$ hanging vertically, as shown. If $M=1.5m$, and the acceleration of the system is $\frac{g}{3}$, where $g$ is the acceleration of gravity, what is $\theta$, in degrees, rounded to the nearest integer?
[asy]size(12cm);
pen p=linewidth(1), dark_grey=gray(0.25), ll_grey=gray(0.90), light_grey=gray(0.75);
pair B = (-1,-1);
pair C = (-1,-7);
pair A = (-13,-7);
path inclined_plane = A--B--C--cycle;
draw(inclined_plane, p);
real r = 1; // for marking angles
draw(arc(A, r, 0, degrees(B-A))); // mark angle
label("$\theta$", A + r/1.337*(dir(C-A)+dir(B-A)), (0,0), fontsize(16pt)); // label angle as theta
draw((C+(-r/2,0))--(C+(-r/2,r/2))--(C+(0,r/2))); // draw right angle
real h = 1.2; // height of box
real w = 1.9; // width of box
path box = (0,0)--(0,h)--(w,h)--(w,0)--cycle; // the box
// box on slope with label
picture box_on_slope;
filldraw(box_on_slope, box, light_grey, black);
label(box_on_slope, "$m$", (w/2,h/2));
pair V = A + rotate(90) * (h/2 * dir(B-A)); // point with distance l/2 from AB
pair T1 = dir(125); // point of tangency with pulley
pair X1 = intersectionpoint(T1--(T1 - rotate(-90)*(2013*dir(T1))), V--(V+B-A)); // construct midpoint of right side of box
draw(T1--X1); // string
add(shift(X1-(w,h/2))*rotate(degrees(B-A), (w,h/2)) * box_on_slope);
// picture for the hanging box
picture hanging_box;
filldraw(hanging_box, box, light_grey, black);
label(hanging_box, "$M$", (w/2,h/2));
pair T2 = (1,0);
pair X2 = (1,-3);
draw(T2--X2); // string
add(shift(X2-(w/2,h)) * hanging_box);
// Draws the actual pulley
filldraw(unitcircle, grey, p); // outer boundary of pulley wheel
filldraw(scale(0.4)*unitcircle, light_grey, p); // inner boundary of pulley wheel
path pulley_body=arc((0,0),0.3,-40,130)--arc((-1,-1),0.5,130,320)--cycle; // defines "arm" of pulley
filldraw(pulley_body, ll_grey, dark_grey+p); // draws the arm
filldraw(scale(0.18)*unitcircle, ll_grey, dark_grey+p); // inner circle of pulley[/asy][i](Proposed by Ahaan Rungta)[/i]
1958 February Putnam, B6
A projectile moves in a resisting medium. The resisting force is a function of the velocity and is directed along the velocity vector. The equation $x=f(t)$ (where $f(t)$ is not constant) gives the horizontal distance in terms of the time $t$. Show that the vertical distance $y$ is given by
$$y=-gf(t) \int \frac{dt}{f'(t)} + g \int \frac{f(t)}{f'(t)} \, dt +Af(t)+B$$
where $A$ and $B$ are constants and $g$ is the acceleration due to gravity.
2005 Iran MO (3rd Round), 2
$n$ vectors are on the plane. We can move each vector forward and backeard on the line that the vector is on it. If there are 2 vectors that their endpoints concide we can omit them and replace them with their sum (If their sum is nonzero). Suppose with these operations with 2 different method we reach to a vector. Prove that these vectors are on a common line
2004 Poland - First Round, 3
3. In acute-angled triangle ABC point D is the perpendicular projection of C on the side AB. Point E is the perpendicular projection of D on the side BC. Point F lies on the side DE and:
$\frac{EF}{FD}=\frac{AD}{DB}$
Prove that $CF \bot AE$
1995 Italy TST, 4
In a triangle $ABC$, $P$ and $Q$ are the feet of the altitudes from $B$ and $A$ respectively. Find the locus of the circumcentre of triangle $PQC$, when point $C$ varies (with $A$ and $B$ fixed) in such a way that $\angle ACB$ is equal to $60^{\circ}$.
2002 South africa National Olympiad, 1
Given a quadrilateral $ABCD$ such that $AB^2 + CD^2 = AD^2 + BC^2$, prove that $AC \perp BD$.
2014 Taiwan TST Round 3, 1
In convex hexagon $ABCDEF$, $AB \parallel DE$, $BC \parallel EF$, $CD \parallel FA$, and \[ AB+DE = BC+EF = CD+FA. \] The midpoints of sides $AB$, $BC$, $DE$, $EF$ are $A_1$, $B_1$, $D_1$, $E_1$, and segments $A_1D_1$ and $B_1E_1$ meet at $O$. Prove that $\angle D_1OE_1 = \frac12 \angle DEF$.
2010 Contests, 3
What is the biggest shadow that a cube of side length $1$ can have, with the sun at its peak?
Note: "The biggest shadow of a figure with the sun at its peak" is understood to be the biggest possible area of the orthogonal projection of the figure on a plane.
2004 National High School Mathematics League, 4
$O$ is a point inside $\triangle ABC$, and $\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}=\overrightarrow{0}$, then the ratio of the area of $\triangle ABC$ to $\triangle AOC$ is
$\text{(A)}2\qquad\text{(B)}\frac{3}{2}\qquad\text{(C)}3\qquad\text{(D)}\frac{5}{3}$
1997 IberoAmerican, 2
In an acute triangle $\triangle{ABC}$, let $AE$ and $BF$ be highs of it, and $H$ its orthocenter. The symmetric line of $AE$ with respect to the angle bisector of $\sphericalangle{A}$ and the symmetric line of $BF$ with respect to the angle bisector of $\sphericalangle{B}$ intersect each other on the point $O$. The lines $AE$ and $AO$ intersect again the circuncircle to $\triangle{ABC}$ on the points $M$ and $N$ respectively.
Let $P$ be the intersection of $BC$ with $HN$; $R$ the intersection of $BC$ with $OM$; and $S$ the intersection of $HR$ with $OP$. Show that $AHSO$ is a paralelogram.
2002 USA Team Selection Test, 3
Let $n$ be an integer greater than 2, and $P_1, P_2, \cdots , P_n$ distinct points in the plane. Let $\mathcal S$ denote the union of all segments $P_1P_2, P_2P_3, \dots , P_{n-1}P_{n}$. Determine if it is always possible to find points $A$ and $B$ in $\mathcal S$ such that $P_1P_n \parallel AB$ (segment $AB$ can lie on line $P_1P_n$) and $P_1P_n = kAB$, where (1) $k = 2.5$; (2) $k = 3$.
2004 Iran MO (3rd Round), 15
This problem is easy but nobody solved it.
point $A$ moves in a line with speed $v$ and $B$ moves also with speed $v'$ that at every time the direction of move of $B$ goes from $A$.We know $v \geq v'$.If we know the point of beginning of path of $A$, then $B$ must be where at first that $B$ can catch $A$.
2007 Tournament Of Towns, 6
Let $P$ and $Q$ be two convex polygons. Let $h$ be the length of the projection of $Q$ onto a line perpendicular to a side of $P$ which is of length $p$. Define $f(P,Q)$ to be the sum of the products $hp$ over all sides of $P$. Prove that $f(P,Q) = f(Q, P)$.