Found problems: 85335
1994 Balkan MO, 2
Let $n$ be an integer. Prove that the polynomial $f(x)$ has at most one zero, where \[ f(x) = x^4 - 1994 x^3 + (1993+n)x^2 - 11x + n . \]
[i]Greece[/i]
2018 ITAMO, 1
$1.$A bottle in the shape of a cone lies on its base. Water is poured into the bottle until its level reaches a distance of 8 centimeters from the vertex of the cone (measured vertically). We now turn the bottle upside down without changing the amount of water it contains; This leaves an empty space in the upper part of the cone that is 2 centimeters high.
Find the height of the bottle.
2012 ELMO Shortlist, 3
Let $s(k)$ be the number of ways to express $k$ as the sum of distinct $2012^{th}$ powers, where order does not matter. Show that for every real number $c$ there exists an integer $n$ such that $s(n)>cn$.
[i]Alex Zhu.[/i]
Kvant 2022, M2700
What is the maximal possible number of roots on the interval (0,1) for a polynomial of degree 2022 with integer coefficients and with the leading coefficient equal to 1?
2019 Federal Competition For Advanced Students, P1, 2
Let $ABC$ be a triangle and $I$ its incenter. The circle passing through $A, C$ and $I$ intersect the line $BC$ for second time at point $X$. The circle passing through $B, C$ and $I$ intersects the line $AC$ for second time at point $Y$. Show that the segments $AY$ and $BX$ have equal length.
2024 Germany Team Selection Test, 2
Let $a_1<a_2<a_3<\dots$ be positive integers such that $a_{k+1}$ divides $2(a_1+a_2+\dots+a_k)$ for every $k\geqslant 1$. Suppose that for infinitely many primes $p$, there exists $k$ such that $p$ divides $a_k$. Prove that for every positive integer $n$, there exists $k$ such that $n$ divides $a_k$.
2016 Saudi Arabia Pre-TST, 1.1
Let $ABC$ be an acute, non isosceles triangle, $AX, BY, CZ$ are the altitudes with $X, Y, Z$ belong to $BC, CA,AB$ respectively. Respectively denote $(O_1), (O_2), (O_3)$ as the circumcircles of triangles $AY Z, BZX, CX Y$ . Suppose that $(K)$ is a circle that internal tangent to $(O_1), (O_2), (O_3)$. Prove that $(K)$ is tangent to circumcircle of triangle $ABC$.
1965 Spain Mathematical Olympiad, 5
It is well-known that if $\frac{p}{q}=\frac{r}{s}$, both of the expressions are also equal to $\frac{p-r}{q-s}$. Now we write the equality $$\frac{3x-b}{3x-5b}=\frac{3a-4b}{3a-8b}.$$ The previous property shows that both fractions should be equal to $$\frac{3x-b-3a+4b}{3x-5b-3a+8b}=\frac{3x-3a+3b}{3x-3a+3b}=1.$$ However, the initial fractions given may not be equal to $1$. Explain what is going on.
2015 Dutch BxMO/EGMO TST, 1
Let $m$ and $n$ be positive integers such that $5m+ n$ is a divisor of $5n +m$.
Prove that $m$ is a divisor of $n$.
2021 IMO Shortlist, C5
Let $n$ and $k$ be two integers with $n>k\geqslant 1$. There are $2n+1$ students standing in a circle. Each student $S$ has $2k$ [i]neighbors[/i] - namely, the $k$ students closest to $S$ on the left, and the $k$ students closest to $S$ on the right.
Suppose that $n+1$ of the students are girls, and the other $n$ are boys. Prove that there is a girl with at least $k$ girls among her neighbors.
[i]Proposed by Gurgen Asatryan, Armenia[/i]
2006 Petru Moroșan-Trident, 2
Study the convergence of the sequence
$$ \left( \sum_{k=2}^{n+1} \sqrt[k]{n+1} -\sum_{k=2}^{n} \sqrt[k]{n} \right)_{n\ge 2} , $$
and calculate its limit.
[i]Dan Negulescu[/i]
Fractal Edition 1, P2
Viorel participates in a mathematics competition with 50 problems. For each problem he answers correctly, he earns 4 points, and for each problem he answers incorrectly, he loses 1 point. If Viorel answered every problem and has 65 points, how many problems did he solve correctly?
2014 Junior Regional Olympiad - FBH, 3
Let $ABCD$ be a trapezoid with base sides $AB$ and $CD$ and let $AB=a$, $BC=b$, $CD=c$, $DA=d$, $AC=m$ and $BD=n$. We know that $m^2+n^2=(a+c)^2$
$a)$ Prove that lines $AC$ and $BD$ are perpendicular
$b)$ Prove that $ac<bd$
Russian TST 2021, P3
Let $ABC$ be a triangle with incenter $I$ and circumcircle $\Gamma$. Circles $\omega_{B}$ passing through $B$ and $\omega_{C}$ passing through $C$ are tangent at $I$. Let $\omega_{B}$ meet minor arc $AB$ of $\Gamma$ at $P$ and $AB$ at $M\neq B$, and let $\omega_{C}$ meet minor arc $AC$ of $\Gamma$ at $Q$ and $AC$ at $N\neq C$. Rays $PM$ and $QN$ meet at $X$. Let $Y$ be a point such that $YB$ is tangent to $\omega_{B}$ and $YC$ is tangent to $\omega_{C}$.
Show that $A,X,Y$ are collinear.
1999 AMC 12/AHSME, 29
A tetrahedron with four equilateral triangular faces has a sphere inscribed within it and a sphere circumscribed about it. For each of the four faces, there is a sphere tangent externally to the face at its center and to the circumscribed sphere. A point $ P$ is selected at random inside the circumscribed sphere. The probability that $ P$ lies inside one of the five small spheres is closest to
$ \textbf{(A)}\ 0\qquad
\textbf{(B)}\ 0.1\qquad
\textbf{(C)}\ 0.2\qquad
\textbf{(D)}\ 0.3\qquad
\textbf{(E)}\ 0.4$
2006 Silk Road, 3
A subset $S$ of the set $M=\{1,2,.....,p-1\}$,where $p$ is a prime number of the kind
$12n+11$,is [i]essential[/i],if the product ${\Pi}_s$ of all elements of the subset
is not less than the product $\bar{{\Pi}_s}$ of all other elements of the set.The
[b]difference[/b] $\bigtriangleup_s=\Pi_s-\bar{{\Pi}_s}$ is called [i]the deviation[/i]
of the subset $S$.Define the least possible remainder of division by $p$ of the deviation of an essential subset,containing $\frac{p-1}{2}$ elements.
2013 Turkey Team Selection Test, 3
Let $O$ be the circumcenter and $I$ be the incenter of an acute triangle $ABC$ with $m(\widehat{B}) \neq m(\widehat{C})$. Let $D$, $E$, $F$ be the midpoints of the sides $[BC]$, $[CA]$, $[AB]$, respectively. Let $T$ be the foot of perpendicular from $I$ to $[AB]$. Let $P$ be the circumcenter of the triangle $DEF$ and $Q$ be the midpoint of $[OI]$. If $A$, $P$, $Q$ are collinear, prove that \[\dfrac{|AO|}{|OD|}-\dfrac{|BC|}{|AT|}=4.\]
2013 Today's Calculation Of Integral, 880
For $a>2$, let $f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)$ and
let $C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).$ Answer the questions as follows.
(1) Show that the point $(f(t),\ g(t))$ lies on the curve $C$.
(2) Find the normal line of the curve $C$ at the point $\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).$
(3) Let $V(a)$ be the volume of the solid generated by a rotation of the part enclosed by the curve $C$, the nornal line found in (2) and the $x$-axis. Express $V(a)$ in terms of $a$, then find $\lim_{a\to\infty} V(a)$.
2002 AIME Problems, 3
It is given that $\log_{6}a+\log_{6}b+\log_{6}c=6,$ where $a,$ $b,$ and $c$ are positive integers that form an increasing geometric sequence and $b-a$ is the square of an integer. Find $a+b+c.$
2016 Middle European Mathematical Olympiad, 7
A positive integer $n$ is [i]Mozart[/i] if the decimal representation of the sequence $1, 2, \ldots, n$ contains each digit an even number of times.
Prove that:
1. All Mozart numbers are even.
2. There are infinitely many Mozart numbers.
1992 Flanders Math Olympiad, 1
For every positive integer $n$, determine the biggest positive integer $k$ so that $2^k |\ 3^n+1$
2024 LMT Fall, B1
Suppose $h$, $i$, $o$ are real numbers that satisfy the products $hi = 12$, $ooh = 18$, and $hohoho = 27$. Find the value of the product $ohio$.
PEN K Problems, 25
Consider all functions $f:\mathbb{N}\to\mathbb{N}$ satisfying $f(t^2 f(s)) = s(f(t))^2$ for all $s$ and $t$ in $N$. Determine the least possible value of $f(1998)$.
2007 China Northern MO, 2
Let $ a,\, b,\, c$ be side lengths of a triangle and $ a+b+c = 3$. Find the minimum of
\[ a^{2}+b^{2}+c^{2}+\frac{4abc}{3}\]
2025 239 Open Mathematical Olympiad, 3
Inside of convex quadrilateral $ABCD$ point $E$ was chosen such that $\angle DAE = \angle CAB$ and $\angle ADE = \angle CDB$. Prove that if perpendicular from $E$ to $AD$ passes from the intersection of diagonals of $ABCD$, then $\angle AEB = \angle CED$.