Found problems: 85335
2011 Kazakhstan National Olympiad, 2
Let $w$-circumcircle of triangle $ABC$ with an obtuse angle $C$ and $C '$symmetric point of point $C$ with respect to $AB$. $M$ midpoint of $AB$. $C'M$ intersects $w$ at $N$ ($C '$ between $M$ and $N$). Let $BC'$ second crossing point $w$ in $F$, and $AC'$ again crosses the $w$ at point $E$. $K$-midpoint $EF$. Prove that the lines $AB, CN$ and$ KC'$are concurrent.
2015 Rioplatense Mathematical Olympiad, Level 3, 2
Let $a , b , c$ positive integers, coprime. For each whole number $n \ge 1$, we denote by $s ( n )$ the number of elements in the set $\{ a , b , c \}$ that divide $n$. We consider $k_1< k_2< k_3<...$ .the sequence of all positive integers that are divisible by some element of $\{ a , b , c \}$. Finally we define the characteristic sequence of $( a , b , c )$ like the succession $ s ( k_1) , s ( k_2) , s ( k_3) , .... $ .
Prove that if the characteristic sequences of $( a , b , c )$ and $( a', b', c')$ are equal, then $a = a', b = b'$ and $c=c'$
1995 Miklós Schweitzer, 9
A serpentine is a sequence of points $P_1 , ..., P_m$ in a plane, not necessarily all different, such that the distance between $P_i$ and $P_{i+1}$ is at least 1, and the segments $P_i P_{i +1}$ are alternately horizontal and vertical. Construct a compact set in which there is a sequence of serpentines with arbitrary long lengths but there is no closed serpentine ($P_m = P_i$ for some i < m).
1998 Bundeswettbewerb Mathematik, 2
Prove that there exist $16$ subsets of set $M = \{1,2,...,10000\}$ with the following property:
For every $z \in M$ there are eight of these subsets whose intersection is $\{z\}$.
2023 ISI Entrance UGB, 4
Let $n_1, n_2, \cdots , n_{51}$ be distinct natural numbers each of which has exactly $2023$ positive integer factors. For instance, $2^{2022}$ has exactly $2023$ positive integer factors $1,2, 2^{2}, 2^{3}, \cdots 2^{2021}, 2^{2022}$. Assume that no prime larger than $11$ divides any of the $n_{i}$'s. Show that there must be some perfect cube among the $n_{i}$'s.
2016 Peru IMO TST, 5
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.
Indonesia MO Shortlist - geometry, g4
Let $D, E, F$, be the touchpoints of the incircle in triangle $ABC$ with sides $BC, CA, AB$, respectively, . Also, let $AD$ and $EF$ intersect at $P$. Prove that $$\frac{AP}{AD} \ge 1 - \frac{BC}{AB + CA}$$.
1965 IMO Shortlist, 3
Given the tetrahedron $ABCD$ whose edges $AB$ and $CD$ have lengths $a$ and $b$ respectively. The distance between the skew lines $AB$ and $CD$ is $d$, and the angle between them is $\omega$. Tetrahedron $ABCD$ is divided into two solids by plane $\epsilon$, parallel to lines $AB$ and $CD$. The ratio of the distances of $\epsilon$ from $AB$ and $CD$ is equal to $k$. Compute the ratio of the volumes of the two solids obtained.
Kyiv City MO Juniors 2003+ geometry, 2007.9.3
On a straight line $4$ points are successively set , $A, P, Q,W $, which are the points of intersection of the bisector $AL $ of the triangle $ABC$ with the circumscribed and inscribed circle. Knowing only these points, construct a triangle $ABC $.
2023 BMT, 3
Consider two geometric sequences $16$, $a_1$, $a_2$, $ . . .$ and $56$, $b_1$, $b_2$, $. . . $ with the same common nonzero ratio. Given that $a_{2023} = b_{2020}$, compute $b_6 - a_6$.
2010 ISI B.Math Entrance Exam, 10
Consider a regular heptagon ( polygon of $7$ equal sides and angles) $ABCDEFG$ as in the figure below:-
$(a).$ Prove $\frac{1}{\sin\frac{\pi}{7}}=\frac{1}{\sin\frac{2\pi}{7}}+\frac{1}{\sin\frac{3\pi}{7}}$
$(b).$ Using $(a)$ or otherwise, show that $\frac{1}{AG}=\frac{1}{AF}+\frac{1}{AE}$
[asy]
draw(dir(360/7)..dir(2*360/7),blue);
draw(dir(2*360/7)..dir(3*360/7),blue);
draw(dir(3*360/7)..dir(4*360/7),blue);
draw(dir(4*360/7)..dir(5*360/7),blue);
draw(dir(5*360/7)..dir(6*360/7),blue);
draw(dir(6*360/7)..dir(7*360/7),blue);
draw(dir(7*360/7)..dir(360/7),blue);
draw(dir(2*360/7)..dir(4*360/7),blue);
draw(dir(4*360/7)..dir(1*360/7),blue);
label("$A$",dir(4*360/7),W);
label("$B$",dir(5*360/7),S);
label("$C$",dir(6*360/7),S);
label("$D$",dir(7*360/7),E);
label("$E$",dir(1*360/7),E);
label("$F$",dir(2*360/7),N);
label("$G$",dir(3*360/7),W);
[/asy]
2017 Harvard-MIT Mathematics Tournament, 33
Welcome to the [b]USAYNO[/b], where each question has a yes/no answer. Choose any subset of the following six problems to answer. If you answer $n$ problems and get them [b]all[/b] correct, you will receive $\max(0, (n-1)(n-2))$ points. If any of them are wrong (or you leave them all blank), you will receive $0$ points.
Your answer should be a six-character string containing 'Y' (for yes), 'N' (for no), or 'B' (for blank). For instance if you think 1, 2, and 6 are 'yes' and 3 and 4 are 'no', you should answer YYNNBY (and receive $12$ points if all five answers are correct, 0 points if any are wrong).
(a) $a,b,c,d,A,B,C,$ and $D$ are positive real numbers such that $\frac{a}{b} > \frac{A}{B}$ and $\frac{c}{d} > \frac{C}{D}$. Is it necessarily true that $\frac{a+c}{b+d} > \frac{A+C}{B+D}$?
(b) Do there exist irrational numbers $\alpha$ and $\beta$ such that the sequence $\lfloor\alpha\rfloor+\lfloor\beta\rfloor, \lfloor2\alpha\rfloor+\lfloor2\beta\rfloor, \lfloor3\alpha\rfloor+\lfloor3\beta\rfloor, \dots$ is arithmetic?
(c) For any set of primes $\mathbb{P}$, let $S_\mathbb{P}$ denote the set of integers whose prime divisors all lie in $\mathbb{P}$. For instance $S_{\{2,3\}}=\{2^a3^b \; | \; a,b\ge 0\}=\{1,2,3,4,6,8,9,12,\dots\}$. Does there exist a finite set of primes $\mathbb{P}$ and integer polynomials $P$ and $Q$ such that $\gcd(P(x), Q(y))\in S_\mathbb{P}$ for all $x,y$?
(d) A function $f$ is called [b]P-recursive[/b] if there exists a positive integer $m$ and real polynomials $p_0(n), p_1(n), \dots, p_m(n)$[color = red], not all zero,[/color] satisfying
\[p_m(n)f(n+m)=p_{m-1}(n)f(n+m-1)+\dots+p_0(n)f(n)\]
for all $n$. Does there exist a P-recursive function $f$ satisfying $\lim_{n\to\infty} \frac{f(n)}{n^{\sqrt{2}}}=1$?
(e) Does there exist a [b]nonpolynomial[/b] function $f: \mathbb{Z}\to\mathbb{Z}$ such that $a-b$ divides $f(a)-f(b)$ for all integers $a\neq b$?
(f) Do there exist periodic functions $f, g:\mathbb{R}\to\mathbb{R}$ such that $f(x)+g(x)=x$ for all $x$?
[color = red]A clarification was issued for problem 33(d) during the test. I have included it above.[/color]
2007 Miklós Schweitzer, 2
We partition the $n$-element subsets of an $n^2+n-1$-element set into two classes. Prove that one of the classes contains $n$-many pairwise disjunct sets.
(translated by Miklós Maróti)
2015 China Northern MO, 7
Use $[x]$ to represent the greatest integer no more than a real number $x$. Let
$$S_n=\left[1+\frac12 +\frac13+...+\frac{1}{n}\right], \,\, (n =1,2,..,)$$ Prove that there are infinitely many $n$ such that $C_n^{S_n}$ is an even number.
[b]PS.[/b] [i]Attached is the original wording which forgets left [/i] [b][ [/b][i]. I hope it is ok where I put it.[/i]
2007 Hanoi Open Mathematics Competitions, 5
Suppose that $A,B,C,D$ are points on a circle, $AB$ is the diameter, $CD$ is perpendicular to $AB$ and meets $AB$ and meets $AB$ at $E , AB$ and $CD$ are integers and $AE - EB=\sqrt{3}$. Find $AE$?
2004 India IMO Training Camp, 4
Let $f$ be a bijection of the set of all natural numbers on to itself. Prove that there exists positive integers $a < a+d < a+ 2d$ such that $f(a) < f(a+d) <f(a+2d)$
2010 Laurențiu Panaitopol, Tulcea, 1
Let be two real numbers $ a<b $ and a function $ f:[a,b]\longrightarrow\mathbb{R} $ having the property that if the sequence $ \left(f\left( x_n \right)\right)_{n\ge 1} $ is convergent, then the sequence $ \left( x_n \right)_{n\ge 1} $ is convergent.
[b]a)[/b] Prove that if $ f $ admits antiderivatives, then $ f $ is integrable.
[b]b)[/b] Is the converse of [b]a)[/b] true?
[i]Marcelina Popa[/i]
2014 PUMaC Combinatorics B, 2
A $100 \times 100$ grid is given as shown. We choose a certain number of cells such that exactly two cells in each row and column are selected. Find the sum of numbers in these cells.
2013 AMC 12/AHSME, 18
Barbara and Jenna play the following game, in which they take turns. A number of coins lie on a table. When it is Barbara's turn, she must remove $2$ or $4$ coins, unless only one coin remains, in which case she loses her turn. When it is Jenna's turn, she must remove $1$ or $3$ coins. A coin flip determines who goes first. Whoever removes the last coin wins the game. Assume both players use their best strategy. Who will win when the game starts with $2013$ coins and when the game starts with $2014$ coins?
$\textbf{(A)}$ Barbara will win with $2013$ coins, and Jenna will win with $2014$ coins.
$\textbf{(B)}$ Jenna will win with $2013$ coins, and whoever goes first will win with $2014$ coins.
$\textbf{(C)}$ Barbara will win with $2013$ coins, and whoever goes second will win with $2014$ coins.
$\textbf{(D)}$ Jenna will win with $2013$ coins, and Barbara will win with $2014$ coins.
$\textbf{(E)}$ Whoever goes first will win with $2013$ coins, and whoever goes second will win with $2014$ coins.
1998 Tournament Of Towns, 5
There are $20$ beads of $10$ colours, two of each colour. They are put in $10$ boxes. It is known that one bead can be selected from each of the boxes so that each colour is represented. Prove that the number of such selections is a non-zero power of $2$.
(A Grishin)
2021 Taiwan TST Round 1, 6
Let $n$ be a positive integer and $N=n^{2021}$. There are $2021$ concentric circles centered at $O$, and $N$ equally-spaced rays are emitted from point $O$. Among the $2021N$ intersections of the circles and the rays, some are painted red while the others remain unpainted.
It is known that, no matter how one intersection point from each circle is chosen, there is an angle $\theta$ such that after a rotation of $\theta$ with respect to $O$, all chosen points are moved to red points. Prove that the minimum number of red points is $2021n^{2020}$.
[I]Proposed by usjl.[/i]
2006 Moldova National Olympiad, 12.2
Let $a, b, n \in \mathbb{N}$, with $a, b \geq 2.$ Also, let $I_{1}(n)=\int_{0}^{1} \left \lfloor{a^n x} \right \rfloor dx $ and $I_{2} (n) = \int_{0}^{1} \left \lfloor{b^n x} \right \rfloor dx.$ Find $\lim_{n \to \infty} \dfrac{I_1(n)}{I_{2}(n)}.$
2020 South East Mathematical Olympiad, 8
Using a nozzle to paint each square in a $1 \times n$ stripe, when the nozzle is aiming at the $i$-th square, the square is painted black, and simultaneously, its left and right neighboring square (if exists) each has an independent probability of $\tfrac{1}{2}$ to be painted black.
In the optimal strategy (i.e. achieving least possible number of painting), the expectation of number of painting to paint all the squares black, is $T(n)$. Find the explicit formula of $T(n)$.
2024 Canada National Olympiad, 3
Let $N{}$ be the number of positive integers with $10$ digits $\overline{d_9d_8\cdots d_0}$ in base $10$ (where $0\le d_i\le9$ for all $i$ and $d_9>0$) such that the polynomial
\[d_9x^9+d_8x^8+\cdots+d_1x+d_0\]
is irreducible in $\Bbb Q$. Prove that $N$ is even.
(A polynomial is irreducible in $\Bbb Q$ if it cannot be factored into two non-constant polynomials with rational coefficients.)
1997 All-Russian Olympiad, 1
Find all integer solutions of the equation $(x^2 - y^2)^2 = 1 + 16y$.
[i]M. Sonkin[/i]