This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

LMT Team Rounds 2021+, 6

Tags: algebra
For all $y$, define cubic $f_y (x)$ such that $f_y (0) = y$, $f_y (1) = y +12$, $f_y (2) = 3y^2$, $f_y (3) = 2y +4$. For all $y$, $f_y(4)$ can be expressed in the form $ay^2 +by +c$ where $a,b,c$ are integers. Find $a +b +c$.

2014 AMC 12/AHSME, 9

Tags:
Five positive consecutive integers starting with $a$ have average $b$. What is the average of $5$ consecutive integers that start with $b$? ${ \textbf{(A)}\ a+3\qquad\textbf{(B)}\ a+4\qquad\textbf{(C)}\ a+5\qquad\textbf{(D)}}\ a+6\qquad\textbf{(E)}\ a+7$

2007 South East Mathematical Olympiad, 2

$AB$ is the diameter of semicircle $O$. $C$,$D$ are two arbitrary points on semicircle $O$. Point $P$ lies on line $CD$ such that line $PB$ is tangent to semicircle $O$ at $B$. Line $PO$ intersects line $CA$, $AD$ at point $E$, $F$ respectively. Prove that $OE$=$OF$.

2008 Saint Petersburg Mathematical Olympiad, 6

In cyclic quadrilateral $ABCD$ rays $AB$ and $DC$ intersect at point $E$, while segments $AC$ and $BD$ intersect at $F$. Point $P$ is on ray $EF$ such that angles $BPE$ and $CPE$ are congruent. Prove that angles $APB$ and $DPC$ are also equal.

2017 AMC 12/AHSME, 13

In the figure below, $3$ of the $6$ disks are to be painted blue, $2$ are to be painted red, and $1$ is to be painted green. Two paintings that can be obtained from one another by a rotation or a reflection of the entire figure are considered the same. How many different paintings are possible? [asy] size(100); pair A, B, C, D, E, F; A = (0,0); B = (1,0); C = (2,0); D = rotate(60, A)*B; E = B + D; F = rotate(60, A)*C; draw(Circle(A, 0.5)); draw(Circle(B, 0.5)); draw(Circle(C, 0.5)); draw(Circle(D, 0.5)); draw(Circle(E, 0.5)); draw(Circle(F, 0.5)); [/asy] $\textbf{(A) } 6 \qquad \textbf{(B) } 8 \qquad \textbf{(C) } 9 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 15$

2004 AMC 10, 5

Tags:
In the expression $ c\cdot a^b\minus{}d$, the values of $ a$, $ b$, $ c$, and $ d$ are $ 0$, $ 1$, $ 2$, and $ 3$, although not necessarily in that order. What is the maximum possible value of the result? $ \textbf{(A)}\ 5\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 9\qquad \textbf{(E)}\ 10$

V Soros Olympiad 1998 - 99 (Russia), 9.2

Tags: algebra
Solve the equation $x^4 + 4x^3 - 8x + 4 = 0$.

2019 Korea National Olympiad, 8

There are two countries $A$ and $B$, where each countries have $n(\ge 2)$ airports. There are some two-way flights among airports of $A$ and $B$, so that each airport has exactly $3$ flights. There might be multiple flights among two airports; and there are no flights among airports of the same country. A travel agency wants to plan an [i]exotic traveling course[/i] which travels through all $2n$ airports exactly once, and returns to the initial airport. If $N$ denotes the number of all exotic traveling courses, then prove that $\frac{N}{4n}$ is an even integer. (Here, note that two exotic traveling courses are different if their starting place are different.)

2008 Balkan MO Shortlist, G5

The circle $k_a$ touches the extensions of sides $AB$ and $BC$, as well as the circumscribed circle of the triangle $ABC$ (from the outside). We denote the intersection of $k_a$ with the circumscribed circle of the triangle $ABC$ by $A'$. Analogously, we define points $B'$ and $C'$. Prove that the lines $AA',BB'$ and $CC'$ intersect in one point.

2022 Regional Olympiad of Mexico West, 5

Determine all positive integers $n$ such that $\lfloor \sqrt{n} \rfloor - 1$ divides $n + 1$ and $\lfloor \sqrt{n} \rfloor +2$ divides $ n + 4$.

2010 Canadian Mathematical Olympiad Qualification Repechage, 7

Tags: function , algebra
If $(a,~b,~c)$ is a triple of real numbers, de fine [list] [*] $g(a,~b,~c)=(a+b,~b+c,~a+c)$, and [*] $g^n(a,~b,~c)=g(g^{n-1}(a,~b,~c))$ for $n\ge 2$[/list] Suppose that there exists a positive integer $n$ so that $g^n(a,~b,~c)=(a,~b,~c)$ for some $(a,~b,~c)\neq (0,~0,~0)$. Prove that $g^6(a,~b,~c)=(a,~b,~c)$

2016 HMNT, 1

Tags: hmmt
If $a$ and $b$ satisfy the equations $a +\frac1b=4$ and $\frac1a+b=\frac{16}{15}$, determine the product of all possible values of $ab$.

2010 Contests, 2

In an acute-angled triangle $ABC$, $M$ is the midpoint of side $BC$, and $D, E$ and $F$ the feet of the altitudes from $A, B$ and $C$, respectively. Let $H$ be the orthocenter of $\Delta ABC$, $S$ the midpoint of $AH$, and $G$ the intersection of $FE$ and $AH$. If $N$ is the intersection of the median $AM$ and the circumcircle of $\Delta BCH$, prove that $\angle HMA = \angle GNS$. [i]Proposed by Marko Djikic[/i]

2003 Cono Sur Olympiad, 1

Tags: algebra
In a soccer tournament between four teams, $A$, $B$, $C$, and $D$, each team plays each of the others exactly once. a) Decide if, at the end of the tournament, it is possible for the quantities of goals scored and goals allowed for each team to be as follows: $\begin{tabular}{ c|c|c|c|c } {} & A & B & C & D \\ \hline Goals scored & 1 & 3 & 6 & 7 \\ \hline Goals allowed & 4 & 4 & 4 & 5 \\ \end{tabular}$ If the answer is yes, give an example for the results of the six games; in the contrary, justify your answer. b) Decide if, at the end of the tournament, it is possible for the quantities of goals scored and goals allowed for each team to be as follows: $\begin{tabular}{ c|c|c|c|c } {} & A & B & C & D \\ \hline Goals scored & 1 & 3 & 6 & 13 \\ \hline Goals allowed & 4 & 4 & 4 & 11 \\ \end{tabular}$ If the answer is yes, give an example for the results of the six games; in the contrary, justify your answer.

2003 China Team Selection Test, 3

Suppose $A\subset \{(a_1,a_2,\dots,a_n)\mid a_i\in \mathbb{R},i=1,2\dots,n\}$. For any $\alpha=(a_1,a_2,\dots,a_n)\in A$ and $\beta=(b_1,b_2,\dots,b_n)\in A$, we define \[ \gamma(\alpha,\beta)=(|a_1-b_1|,|a_2-b_2|,\dots,|a_n-b_n|), \] \[ D(A)=\{\gamma(\alpha,\beta)\mid\alpha,\beta\in A\}. \] Please show that $|D(A)|\geq |A|$.

2024 Al-Khwarizmi IJMO, 3

Tags: inequalities
Find all $x, y, z \in \left (0, \frac{1}{2}\right )$ such that $$ \begin{cases} (3 x^{2}+y^{2}) \sqrt{1-4 z^{2}} \geq z; \\ (3 y^{2}+z^{2}) \sqrt{1-4 x^{2}} \geq x; \\ (3 z^{2}+x^{2}) \sqrt{1-4 y^{2}} \geq y. \end{cases} $$ [i]Proposed by Ngo Van Trang, Vietnam[/i]

2011 AMC 12/AHSME, 6

Tags:
The players on a basketball team made some three-point shots, some two-point shots, and some one-point free throws. They scored as many points with two-point shots as with three-point shots. Their number of successful free throws was one more than their number of successful two-point shots. The team's total score was 61 points. How many free throws did they make? $ \textbf{(A)}\ 13 \qquad \textbf{(B)}\ 14 \qquad \textbf{(C)}\ 15 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 17 $

2020-21 IOQM India, 5

Find the number of integer solutions to $||x| - 2020| < 5$.

2014 Hanoi Open Mathematics Competitions, 11

Find all pairs of integers $(x,y)$ satisfying the following equality $8x^2y^2 + x^2 + y^2 = 10xy$

2006 India IMO Training Camp, 3

There are $ n$ markers, each with one side white and the other side black. In the beginning, these $ n$ markers are aligned in a row so that their white sides are all up. In each step, if possible, we choose a marker whose white side is up (but not one of the outermost markers), remove it, and reverse the closest marker to the left of it and also reverse the closest marker to the right of it. Prove that, by a finite sequence of such steps, one can achieve a state with only two markers remaining if and only if $ n \minus{} 1$ is not divisible by $ 3$. [i]Proposed by Dusan Dukic, Serbia[/i]

2005 Croatia National Olympiad, 3

Tags: inequalities
If $k, l, m$ are positive integers with $\frac{1}{k}+\frac{1}{l}+\frac{1}{m}<1$, find the maximum possible value of $\frac{1}{k}+\frac{1}{l}+\frac{1}{m}$.

2003 Tournament Of Towns, 2

Two players in turns color the sides of an $n$-gon. The first player colors any side that has $0$ or $2$ common vertices with already colored sides. The second player colors any side that has exactly $1$ common vertex with already colored sides. The player who cannot move, loses. For which $n$ the second player has a winning strategy?

2005 Iran MO (3rd Round), 1

Suppose $a,b,c\in \mathbb R^+$. Prove that :\[\left(\frac ab+\frac bc+\frac ca\right)^2\geq (a+b+c)\left(\frac1a+\frac1b+\frac1c\right)\]

2010 Contests, 3

Tags: trigonometry
Prove that there is no real number $x$ satisfying both equations \begin{align*}2^x+1=2\sin x \\ 2^x-1=2\cos x.\end{align*}

2017 Moldova Team Selection Test, 1

Tags: algebra
Let the sequence $(a_{n})_{n\geqslant 1}$ be defined as: $$a_{n}=\sqrt{A_{n+2}^{1}\sqrt[3]{A_{n+3}^{2}\sqrt[4]{A_{n+4}^{3}\sqrt[5]{A_{n+5}^{4}}}}},$$ where $A_{m}^{k}$ are defined by $$A_{m}^{k}=\binom{m}{k}\cdot k!.$$ Prove that $$a_{n}<\frac{119}{120}\cdot n+\frac{7}{3}.$$