This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2024 ELMO Shortlist, G6

In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear. [i]Tiger Zhang[/i]

2016 Czech-Polish-Slovak Junior Match, 1

Let $ABC$ be a right-angled triangle with hypotenuse $AB$. Denote by $D$ the foot of the altitude from $C$. Let $Q, R$, and $P$ be the midpoints of the segments $AD, BD$, and $CD$, respectively. Prove that $\angle AP B + \angle QCR = 180^o$. Czech Republic

2011 Tournament of Towns, 3

In triangle $ABC$, points $A_1,B_1,C_1$ are bases of altitudes from vertices $A,B,C$, and points $C_A,C_B$ are the projections of $C_1$ to $AC$ and $BC$ respectively. Prove that line $C_AC_B$ bisects the segments $C_1A_1$ and $C_1B_1$.

2023 Turkey Olympic Revenge, 1

Find all $c\in \mathbb{R}$ such that there exists a function $f:\mathbb{R}\to \mathbb{R}$ satisfying $$(f(x)+1)(f(y)+1)=f(x+y)+f(xy+c)$$ for all $x,y\in \mathbb{R}$. [i]Proposed by Kaan Bilge[/i]

2019 Iranian Geometry Olympiad, 1

Circles $\omega_1$ and $\omega_2$ intersect each other at points $A$ and $B$. Point $C$ lies on the tangent line from $A$ to $\omega_1$ such that $\angle ABC = 90^\circ$. Arbitrary line $\ell$ passes through $C$ and cuts $\omega_2$ at points $P$ and $Q$. Lines $AP$ and $AQ$ cut $\omega_1$ for the second time at points $X$ and $Z$ respectively. Let $Y$ be the foot of altitude from $A$ to $\ell$. Prove that points $X, Y$ and $Z$ are collinear. [i]Proposed by Iman Maghsoudi[/i]

2011 QEDMO 10th, 3

Let $a, b$ be positive integers such that $a^2 + ab + 1$ a multiple of $b^2 + ab + 1$. Prove that $a = b$.

2022 Puerto Rico Team Selection Test, 3

Let $\omega$ be a circle with center $O$ and diameter $AB$. A circle with center at $B$ intersects $\omega$ at C and $AB$ at $D$. The line $CD$ intersects $\omega$ at a point $E$ ($E\ne C$). The intersection of lines $OE$ and $BC$ is $F$. (a) Prove that triangle $OBF$ is isosceles. (b) If $D$ is the midpoint of $OB$, find the value of the ratio $\frac{FB}{BD}$.

2015 Cuba MO, 7

If $p$ is a prime number and $x, y$ are positive integers, find in terms of $p$, all pairs $(x, y)$ that satisfy the equation: $$p(x -2) = x(y -1).$$ If $x+y = 21$, find all triples $(x, y, p)$ that satisfy this equation.

2011 District Olympiad, 1

On the sides $ AB,BC,CD,DA $ of the parallelogram $ ABCD, $ consider the points $ M,N,P, $ respectively, $ Q, $ such that $ \overrightarrow{MN} +\overrightarrow{QP} =\overrightarrow{AC} . $ Show that $ \overrightarrow{PN} +\overrightarrow{QM} = \overrightarrow{DB} . $

2011 All-Russian Olympiad, 1

Given are $10$ distinct real numbers. Kyle wrote down the square of the difference for each pair of those numbers in his notebook, while Peter wrote in his notebook the absolute value of the differences of the squares of these numbers. Is it possible for the two boys to have the same set of $45$ numbers in their notebooks?

2001 Switzerland Team Selection Test, 4

For a natural number $n \ge 2$, consider all representations of $n$ as a sum of its distinct divisors, $n = t_1 + t_2 + ... + t_k, t_i| n$. Two such representations differing only in order of the summands are considered the same (for example, $20 = 10+5+4+1$ and $20 = 5+1+10+4$). Let $a(n)$ be the number of different representations of $n$ in this form. Prove or disprove: There exists M such that $a(n) \le M$ for all $n \ge 2$.

2001 Romania National Olympiad, 4

The continuous function $f:[0,1]\rightarrow\mathbb{R}$ has the property: \[\lim_{x\rightarrow\infty}\ n\left(f\left(x+\frac{1}{n}\right)-f(x)\right)=0 \] for every $x\in [0,1)$. Show that: a) For every $\epsilon >0$ and $\lambda\in (0,1)$, we have: \[ \sup\ \{x\in[0,\lambda )\mid |f(x)-f(0)|\le \epsilon x \}=\lambda \] b) $f$ is a constant function.

2014 Indonesia MO, 3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

2012 Brazil National Olympiad, 4

There exists some integers $n,a_1,a_2,\ldots,a_{2012}$ such that \[ n^2=\sum_{1 \leq i \leq 2012}{{a_i}^{p_i}} \] where $p_i$ is the i-th prime ($p_1=2,p_2=3,p_3=5,p_4=7,\ldots$) and $a_i>1$ for all $i$?

2012 District Olympiad, 2

If $ a,b,c>0, $ then $ \sum_{\text{cyc}} \frac{a}{2a+b+c}\le 3/4. $

2003 Portugal MO, 1

The planet Caramelo is a cube with a $1$ km edge. This planet is going to be wrapped with foam anti-gluttons in order to prevent the presence of greedy ships less than $500$ meters from the planet. What the minimum volume of foam that must surround the planet?

1958 November Putnam, B2

Hi everybody! I've an interesting problem! Can you solve it? Prove [b]Erdös-Ginzburg-Ziv Theorem[/b]: [i]"Among any $2n-1$ integers, there are some $n$ whose sum is divisible by $n$."[/i]

2017 ASDAN Math Tournament, 14

Tags:
What are the last two digits of $2017^{2017}$?

2015 CHMMC (Fall), 2

Let $a_1 = 1$, $a_2 = 1$, and for $n \ge 2$, let $$a_{n+1} =\frac{1}{n} a_n + a_{n-1}.$$ What is $a_{12}$?

2010 Dutch IMO TST, 1

Let $ABC$ be an acute triangle such that $\angle BAC = 45^o$. Let $D$ a point on $AB$ such that $CD \perp AB$. Let $P$ be an internal point of the segment $CD$. Prove that $AP\perp BC$ if and only if $|AP| = |BC|$.

1993 All-Russian Olympiad, 2

Segments $AB$ and $CD$ of length $1$ intersect at point $O$ and angle $AOC$ is equal to sixty degrees. Prove that $AC+BD \ge 1$.

2013 China National Olympiad, 1

Let $n \geqslant 2$ be an integer. There are $n$ finite sets ${A_1},{A_2},\ldots,{A_n}$ which satisfy the condition \[\left| {{A_i}\Delta {A_j}} \right| = \left| {i - j} \right| \quad \forall i,j \in \left\{ {1,2,...,n} \right\}.\] Find the minimum of $\sum\limits_{i = 1}^n {\left| {{A_i}} \right|} $.

2008 India National Olympiad, 6

Let $ P(x)$ be a polynomial with integer coefficients. Prove that there exist two polynomials $ Q(x)$ and $ R(x)$, again with integer coefficients, such that [b](i)[/b] $ P(x) \cdot Q(x)$ is a polynomial in $ x^2$ , and [b](ii)[/b] $ P(x) \cdot R(x)$ is a polynomial in $ x^3$.

2015 Switzerland Team Selection Test, 3

Tags: geometry , angle , middle
Let $ABC$ be a triangle with $AB> AC$. Let $D$ be a point on $AB$ such that $DB = DC$ and $M$ the middle of $AC$. The parallel to $BC$ passing through $D$ intersects the line $BM$ in $K$. Show that $\angle KCD = \angle DAC$.

2018 Belarusian National Olympiad, 11.4

A checkered polygon $A$ is drawn on the checkered plane. We call a cell of $A$ [i]internal[/i] if all $8$ of its adjacent cells belong to $A$. All other (non-internal) cells of $A$ we call [i]boundary[/i]. It is known that $1)$ each boundary cell has exactly two common sides with no boundary cells; and 2) the union of all boundary cells can be divided into isosceles trapezoid of area $2$ with vertices at the grid nodes (and acute angles of the trapezoids are equal $45^\circ$). Prove that the area of the polygon $A$ is congruent to $1$ modulo $4$.