This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2023 Polish MO Finals, 3

Given a positive integer $n \geq 2$ and real numbers $a_1, a_2, \ldots, a_n \in [0,1]$. Prove that there exist real numbers $b_1, b_2, \ldots, b_n \in \{0,1\}$, such that for all $1\leq k\leq l \leq n$ we have $$\left| \sum_{i=k}^l (a_i-b_i)\right| \leq \frac{n}{n+1}.$$

2012 Putnam, 1

Let $S$ be a class of functions from $[0,\infty)$ to $[0,\infty)$ that satisfies: (i) The functions $f_1(x)=e^x-1$ and $f_2(x)=\ln(x+1)$ are in $S;$ (ii) If $f(x)$ and $g(x)$ are in $S,$ the functions $f(x)+g(x)$ and $f(g(x))$ are in $S;$ (iii) If $f(x)$ and $g(x)$ are in $S$ and $f(x)\ge g(x)$ for all $x\ge 0,$ then the function $f(x)-g(x)$ is in $S.$ Prove that if $f(x)$ and $g(x)$ are in $S,$ then the function $f(x)g(x)$ is also in $S.$

2020 China National Olympiad, 4

Find the largest positive constant $C$ such that the following is satisfied: Given $n$ arcs (containing their endpoints) $A_1,A_2,\ldots ,A_n$ on the circumference of a circle, where among all sets of three arcs $(A_i,A_j,A_k)$ $(1\le i< j< k\le n)$, at least half of them has $A_i\cap A_j\cap A_k$ nonempty, then there exists $l>Cn$, such that we can choose $l$ arcs among $A_1,A_2,\ldots ,A_n$, whose intersection is nonempty.

1984 USAMO, 2

The geometric mean of any set of $m$ non-negative numbers is the $m$-th root of their product. $\quad (\text{i})\quad$ For which positive integers $n$ is there a finite set $S_n$ of $n$ distinct positive integers such that the geometric mean of any subset of $S_n$ is an integer? $\quad (\text{ii})\quad$ Is there an infinite set $S$ of distinct positive integers such that the geometric mean of any finite subset of $S$ is an integer?

2024 ELMO Shortlist, C2

Let $n$ be a fixed positive integer. Ben is playing a computer game. The computer picks a tree $T$ such that no vertex of $T$ has degree $2$ and such that $T$ has exactly $n$ leaves, labeled $v_1,\ldots, v_n$. The computer then puts an integer weight on each edge of $T$, and shows Ben neither the tree $T$ nor the weights. Ben can ask queries by specifying two integers $1\leq i < j \leq n$, and the computer will return the sum of the weights on the path from $v_i$ to $v_j$. At any point, Ben can guess whether the tree's weights are all zero. He wins the game if he is correct, and loses if he is incorrect. (a) Show that if Ben asks all $\binom n2$ possible queries, then he can guarantee victory. (b) Does Ben have a strategy to guarantee victory in less than $\binom n2$ queries? [i]Brandon Wang[/i]

2008 Postal Coaching, 3

Prove that there exists an in nite sequence $<a_n>$ of positive integers such that for each $k \ge 1$ $(a_1 - 1)(a_2 - 1)(a_3 -1)...(a_k - 1)$ divides $a_1a_2a_3 ...a_k + 1$.

1990 IMO Longlists, 4

Given $ n$ countries with three representatives each, $ m$ committees $ A(1),A(2), \ldots, A(m)$ are called a cycle if [i](i)[/i] each committee has $ n$ members, one from each country; [i](ii)[/i] no two committees have the same membership; [i](iii)[/i] for $ i \equal{} 1, 2, \ldots,m$, committee $ A(i)$ and committee $ A(i \plus{} 1)$ have no member in common, where $ A(m \plus{} 1)$ denotes $ A(1);$ [i](iv)[/i] if $ 1 < |i \minus{} j| < m \minus{} 1,$ then committees $ A(i)$ and $ A(j)$ have at least one member in common. Is it possible to have a cycle of 1990 committees with 11 countries?

2012 NIMO Problems, 1

Tags:
Let $f(x) = (x^4 + 2x^3 + 4x^2 + 2x + 1)^5$. Compute the prime $p$ satisfying $f(p) = 418{,}195{,}493$. [i]Proposed by Eugene Chen[/i]

2013 Today's Calculation Of Integral, 877

Let $f(x)=\lim_{n\to\infty} \frac{\sin^{n+2}x+\cos^{n+2}x}{\sin^n x+\cos^n x}$ for $0\leq x\leq \frac{\pi}2.$ Evaluate $\int_0^{\frac{\pi}2} f(x)\ dx.$

2016 AMC 12/AHSME, 4

Tags: ratio
The ratio of the measures of two acute angles is $5:4$, and the complement of one of these two angles is twice as large as the complement of the other. What is the sum of the degree measures of the two angles? $\textbf{(A)}\ 75\qquad\textbf{(B)}\ 90\qquad\textbf{(C)}\ 135\qquad\textbf{(D)}\ 150\qquad\textbf{(E)}\ 270$

2013 All-Russian Olympiad, 4

On a $55\times 55$ square grid, $500$ unit squares were cut out as well as $400$ L-shaped pieces consisting of 3 unit squares (each piece can be oriented in any way) [refer to the figure]. Prove that at least two of the cut out pieces bordered each other before they were cut out. [asy]size(2.013cm); draw ((0,0)--(0,1)); draw ((0,0)--(1,0)); draw ((0,1)--(.5,1)); draw ((.5,1)--(.5,0)); draw ((0,.5)--(1,.5)); draw ((1,.5)--(1,0)); draw ((1,.5)--(1,0)); [/asy]

1997 USAMO, 5

Prove that, for all positive real numbers $ a$, $ b$, $ c$, the inequality \[ \frac {1}{a^3 \plus{} b^3 \plus{} abc} \plus{} \frac {1}{b^3 \plus{} c^3 \plus{} abc} \plus{} \frac {1}{c^3 \plus{} a^3 \plus{} abc} \leq \frac {1}{abc} \] holds.

1958 Miklós Schweitzer, 2

Tags:
[b]2.[/b] Let $A(x)$ denote the number of positive integers $n$ not greater than $x$ and having at least one prime divisor greater than $\sqrt[3]{n}$. Prove that $\lim_{x\to \infty} \frac {A(x)}{x}$ exists. [b](N. 15)[/b]

1993 Spain Mathematical Olympiad, 4

Prove that for each prime number distinct from $2$ and $5$ there exist infinitely many multiples of $p$ of the form $1111...1$.

2018 Iran MO (1st Round), 22

There are eight congruent $1\times 2$ tiles formed of one blue square and one red square. In how many ways can we cover a $4\times 4$ area with these tiles so that each row and each column has two blue squares and two red squares?

2023 IMC, 5

Fix positive integers $n$ and $k$ such that $2 \le k \le n$ and a set $M$ consisting of $n$ fruits. A [i]permutation[/i] is a sequence $x=(x_1,x_2,\ldots,x_n)$ such that $\{x_1,\ldots,x_n\}=M$. Ivan [i]prefers[/i] some (at least one) of these permutations. He realized that for every preferred permutation $x$, there exist $k$ indices $i_1 < i_2 < \ldots < i_k$ with the following property: for every $1 \le j < k$, if he swaps $x_{i_j}$ and $x_{i_{j+1}}$, he obtains another preferred permutation. \\ Prove that he prefers at least $k!$ permutations.

2023 AMC 10, 19

Tags: probability
Sonya the frog chooses a point uniformly at random lying within the square $[0, 6] \times [0, 6]$ in the coordinate plane and hops to that point. She then randomly chooses a distance uniformly at random from $[0, 1]$ and a direction uniformly at random from {north, south east, west}. All he choices are independent. She now hops the distance in the chosen direction. What is the probability that she lands outside the square? $\textbf{(A) } \frac{1}{6} \qquad \textbf{(B) } \frac{1}{12} \qquad \textbf{(C) } \frac{1}{4} \qquad \textbf{(D) } \frac{1}{10} \qquad \textbf{(E) } \frac{1}{9}$

2019 Vietnam TST, P3

Given an acute scalene triangle $ABC$ inscribed in circle $(O)$. Let $H$ be its orthocenter and $M$ be the midpoint of $BC$. Let $D$ lie on the opposite rays of $HA$ so that $BC=2DM$. Let $D'$ be the reflection of $D$ through line $BC$ and $X$ be the intersection of $AO$ and $MD$. a) Show that $AM$ bisects $D'X$. b) Similarly, we define the points $E,F$ like $D$ and $Y,Z$ like $X$. Let $S$ be the intersection of tangent lines from $B,C$ with respect to $(O)$. Let $G$ be the projection of the midpoint of $AS$ to the line $AO$. Show that there exists a point with the same power to all the circles $(BEY),(CFZ),(SGO)$ and $(O)$.

2019 Harvard-MIT Mathematics Tournament, 5

Find all positive integers $n$ such that the unit segments of an $n \times n$ grid of unit squares can be partitioned into groups of three such that the segments of each group share a common vertex.

1969 IMO Longlists, 2

$(BEL 2) (a)$ Find the equations of regular hyperbolas passing through the points $A(\alpha, 0), B(\beta, 0),$ and $C(0, \gamma).$ $(b)$ Prove that all such hyperbolas pass through the orthocenter $H$ of the triangle $ABC.$ $(c)$ Find the locus of the centers of these hyperbolas. $(d)$ Check whether this locus coincides with the nine-point circle of the triangle $ABC.$

2021 Iran MO (3rd Round), 3

Let $n\ge 3$ be a fixed integer. There are $m\ge n+1$ beads on a circular necklace. You wish to paint the beads using $n$ colors, such that among any $n+1$ consecutive beads every color appears at least once. Find the largest value of $m$ for which this task is $\emph{not}$ possible. [i]Carl Schildkraut, USA[/i]

2022 China Second Round A1, 2

Tags: geometry
In acute triangle $\triangle ABC$, $H$ is the orthocenter, $BD$,$CE$ are altitudes. $M$ is the midpoint of $BC$. $P$,$Q$ are on segment $BM$,$DE$, respectively. $R$ is on segment $PQ$ such that $\frac{BP}{EQ}=\frac{CP}{DQ}=\frac{PR}{QR}$. Suppose $L$ is the orthocenter of $\triangle AHR$, then prove: $QM$ passes through the midpoint of $RL$.

TNO 2024 Junior, 6

A box contains 900 cards numbered from 100 to 999. Cards are drawn randomly, one at a time, without replacement, and the sum of their digits is recorded. What is the minimum number of cards that must be drawn to guarantee that at least three of these sums are the same?

2006 Dutch Mathematical Olympiad, 4

Given is triangle $ABC$ with an inscribed circle with center $M$ and radius $r$. The tangent to this circle parallel to $BC$ intersects $AC$ in $D$ and $AB$ in $E$. The tangent to this circle parallel to $AC$ intersects $AB$ in $F$ and $BC$ in $G$. The tangent to this circle parallel to $AB$ intersects $BC$ in $H$ and $AC$ in $K$. Name the centers of the inscribed circles of triangle $AED$, triangle $FBG$ and triangle $KHC$ successively $M_A, M_B, M_C$ and the rays successively $r_A, r_B$ and $r_C$. Prove that $r_A + r_B + r_C = r$.

2022 Assam Mathematical Olympiad, 18

Tags:
Let $f : \mathbb{N} \longrightarrow \mathbb{N}$ be a function such that (a) $ f(m) < f(n)$ whenever $m < n$. (b) $f(2n) = f(n) + n$ for all $n \in \mathbb{N}$. (c) $n$ is prime whenever $f(n)$ is prime. Find $$\sum_{n=1}^{2022} f(n).$$