Found problems: 85335
1975 Poland - Second Round, 5
Prove that if a sphere can be inscribed in a convex polyhedron and each face of this polyhedron can be painted in one of two colors such that any two faces sharing a common edge are of different colors, then the sum of the areas of the faces of one color is equal to the sum of the areas of the faces of the other color.
1991 Vietnam Team Selection Test, 3
Let a set $X$ be given which consists of $2 \cdot n$ distinct real numbers ($n \geq 3$). Consider a set $K$ consisting of some pairs $(x, y)$ of distinct numbers $x, y \in X$, satisfying the two conditions:
[b]I.[/b] If $(x, y) \in K$ then $(y, x) \not \in K$.
[b]II.[/b] Every number $x \in X$ belongs to at most 19 pairs of $K$.
Show that we can divide the set $X$ into 5 non-empty disjoint sets $X_1, X_2, X_3, X_4, X_5$ in such a way that for each $i = 1, 2, 3, 4, 5$ the number of pairs $(x, y) \in K$ where $x, y$ both belong to $X_i$ is not greater than $3 \cdot n$.
2007 IMS, 2
Does there exist two unfair dices such that probability of their sum being $j$ be a number in $\left(\frac2{33},\frac4{33}\right)$ for each $2\leq j\leq 12$?
1996 India Regional Mathematical Olympiad, 3
Solve for real numbers $x$ and $y$,
\begin{eqnarray*} \\ xy^2 &=& 15x^2 + 17xy +15y^2 ; \\ \\ x^2y &=& 20x^2 + 3y^2. \end{eqnarray*}
2012 Today's Calculation Of Integral, 854
Given a figure $F: x^2+\frac{y^2}{3}=1$ on the coordinate plane. Denote by $S_n$ the area of the common part of the $n+1' s$ figures formed by rotating $F$ of $\frac{k}{2n}\pi\ (k=0,\ 1,\ 2,\ \cdots,\ n)$ radians counterclockwise about the origin. Find $\lim_{n\to\infty} S_n$.
1984 IMO Shortlist, 10
Prove that the product of five consecutive positive integers cannot be the square of an integer.
2022 Rioplatense Mathematical Olympiad, 2
Eight teams play a rugby tournament in which each team plays exactly one match against each of the remaining seven teams. In each match, if it's a tie each team gets $1$ point and if it isn't a tie then the winner gets $2$ points and the loser gets $0$ points. After the tournament it was observed that each of the eight teams had a different number of points and that the number of points of the winner of the tournament was equal to the sum of the number of points of the last four teams.
Give an example of a tournament that satisfies this conditions, indicating the number of points obtained by each team and the result of each match.
2014 Contests, 2
Let $n$ be a natural number. Prove that,
\[ \left\lfloor \frac{n}{1} \right\rfloor+ \left\lfloor \frac{n}{2} \right\rfloor + \cdots + \left\lfloor \frac{n}{n} \right\rfloor + \left\lfloor \sqrt{n} \right\rfloor \]
is even.
1966 Bulgaria National Olympiad, Problem 4
It is given a tetrahedron with vertices $A,B,C,D$.
(a) Prove that there exists a vertex of the tetrahedron with the following property: the three edges of that tetrahedron through that vertex can form a triangle.
(b) On the edges $DA,DB$ and $DC$ there are given the points $M,N$ and $P$ for which:
$$DM=\frac{DA}n,\enspace DN=\frac{DB}{n+1}\enspace DP=\frac{DC}{n+2}$$where $n$ is a natural number. The plane defined by the points $M,N$ and $P$ is $\alpha_n$. Prove that all planes $\alpha_n$, $(n=1,2,3,\ldots)$ pass through a single straight line.
1985 ITAMO, 10
How many of the first 1000 positive integers can be expressed in the form
\[ \lfloor 2x \rfloor + \lfloor 4x \rfloor + \lfloor 6x \rfloor + \lfloor 8x \rfloor, \]
where $x$ is a real number, and $\lfloor z \rfloor$ denotes the greatest integer less than or equal to $z$?
2004 Bulgaria Team Selection Test, 2
Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.
2019 Brazil Undergrad MO, 4
Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for any $(x, y)$ real numbers we have
$f(xf(y)+f(x))+f(y^2)=f(x)+yf(x+y)$
2010 Grand Duchy of Lithuania, 5
Find positive integers n that satisfy the following two conditions:
(a) the quotient obtained when $n$ is divided by $9$ is a positive three digit number, that has equal digits.
(b) the quotient obtained when $n + 36$ is divided by $4$ is a four digit number, the digits beeing $2, 0, 0, 9$ in some order.
2007 Hanoi Open Mathematics Competitions, 10
Let a; b; c be positive real numbers such that $\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab} \geq 1$. Prove that $\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} \geq 1$.
2020 USOMO, 1
Let $ABC$ be a fixed acute triangle inscribed in a circle $\omega$ with center $O$. A variable point $X$ is chosen on minor arc $AB$ of $\omega$, and segments $CX$ and $AB$ meet at $D$. Denote by $O_1$ and $O_2$ the circumcenters of triangles $ADX$ and $BDX$, respectively. Determine all points $X$ for which the area of triangle $OO_1O_2$ is minimized.
[i]Proposed by Zuming Feng[/i]
2021 Turkey Team Selection Test, 6
For which positive integers $n$, one can find real numbers $x_1,x_2,\cdots ,x_n$ such that $$\dfrac{x_1^2+x_2^2+\cdots+x_n^2}{\left(x_1+2x_2+\cdots+nx_n\right)^2}=\dfrac{27}{4n(n+1)(2n+1)}$$ and $i\leq x_i\leq 2i$ for all $i=1,2,\cdots ,n$ ?
ICMC 3, 4
Let n be a non-negative integer. Define the [i]decimal digit product[/i] \(D(n)\) inductively as follows:
- If \(n\) has a single decimal digit, then let \(D(n) = n\).
- Otherwise let \(D(n) = D(m)\), where \(m\) is the product of the decimal digits of \(n\).
Let \(P_k(1)\) be the probability that \(D(i) = 1\) where \(i\) is chosen uniformly randomly from the set of integers between 1 and \(k\) (inclusive) whose decimal digit products are not 0.
Compute \(\displaystyle\lim_{k\to\infty} P_k(1)\).
[i]proposed by the ICMC Problem Committee[/i]
2014 Contests, 2
Let $n \ge 2$ be an integer. Consider an $n \times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is [i]peaceful[/i] if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k \times k$ square which does not contain a rook on any of its $k^2$ unit squares.
1999 National Olympiad First Round, 4
If inequality $ \frac {\sin ^{3} x}{\cos x} \plus{} \frac {\cos ^{3} x}{\sin x} \ge k$ is hold for every $ x\in \left(0,\frac {\pi }{2} \right)$, what is the largest possible value of $ k$?
$\textbf{(A)}\ \frac {1}{2} \qquad\textbf{(B)}\ \frac {3}{4} \qquad\textbf{(C)}\ 1 \qquad\textbf{(D)}\ \frac {3}{2} \qquad\textbf{(E)}\ \text{None}$
2009 AMC 12/AHSME, 14
A triangle has vertices $ (0,0)$, $ (1,1)$, and $ (6m,0)$, and the line $ y \equal{} mx$ divides the triangle into two triangles of equal area. What is the sum of all possible values of $ m$?
$ \textbf{(A)}\minus{} \!\frac {1}{3} \qquad \textbf{(B)} \minus{} \!\frac {1}{6} \qquad \textbf{(C)}\ \frac {1}{6} \qquad \textbf{(D)}\ \frac {1}{3} \qquad \textbf{(E)}\ \frac {1}{2}$
2011 Math Prize For Girls Problems, 9
Let $ABC$ be a triangle. Let $D$ be the midpoint of $\overline{BC}$, let $E$ be the midpoint of $\overline{AD}$, and let $F$ be the midpoint of $\overline{BE}$. Let $G$ be the point where the lines $AB$ and $CF$ intersect. What is the value of $\frac{AG}{AB}$?
1965 German National Olympiad, 6
Let $\alpha,\beta, \gamma$ be the angles of a triangle. Prove that $\cos\alpha, + \cos\beta + \cos\gamma \le \frac{3}{2} $ and find the cases of equality.
1996 Romania National Olympiad, 4
In the right triangle $ABC$ ($m ( \angle A) = 90^o$) $D$ is the foot of the altitude from $A$. The bisectors of the angles $ABD$ and $ADB$ intersect in $I_1$ and the bisectors of the angles $ACD$ and $ADC$ in $I_2$. Find the angles of the triangle if the sum of distances from $I_1$ and $I_2$ to $AD$ is equal to $\frac14$ of the length of $BC$.
1979 Chisinau City MO, 171
Are there numbers $a, b$ such that $| a -b |\le 1979$ and the equation $ax^2 + (a + b) x + b = x$ has no roots?
1997 Spain Mathematical Olympiad, 4
Let $p$ be a prime number. Find all integers $k$ for which $\sqrt{k^2 -pk}$ is a positive integer.