Found problems: 85335
2012 Turkey Junior National Olympiad, 4
We want to place $2012$ pockets, including variously colored balls, into $k$ boxes such that
[b]i)[/b] For any box, all pockets in this box must include a ball with the same color
or
[b]ii)[/b] For any box, all pockets in this box must include a ball having a color which is not included in any other pocket in this box
Find the smallest value of $k$ for which we can always do this placement whatever the number of balls in the pockets and whatever the colors of balls.
1998 Slovenia National Olympiad, Problem 1
Show that for any integter $a$, the number $\frac{a^5}5+\frac{a^3}3+\frac{7a}{15}$ is an integer.
1972 Bulgaria National Olympiad, Problem 1
Prove that there are don't exist integers $a,b,c$ such that for every integer $x$ the number $A=(x+a)(x+b)(x+c)-x^3-1$ is divisible by $9$.
[i]I. Tonov[/i]
2012 Purple Comet Problems, 5
Meredith drives 5 miles to the northeast, then 15 miles to the southeast, then 25 miles to the southwest, then 35 miles to the northwest, and finally 20 miles to the northeast. How many miles is Meredith from where she started?
2007 Grigore Moisil Intercounty, 2
Prove that if all roots of a monic cubic polynomial have modulus $ 1, $ then, the two middle coefficients have the same modulus.
2007 All-Russian Olympiad Regional Round, 8.4
On the chessboard, $ 32$ black pawns and $ 32$ white pawns are arranged. In every move, a pawn can capture another pawn of the opposite color, moving diagonally to an adjacent square where the captured one stands. White pawns move only in upper-left or upper-right directions, while black ones can move in down-left or in down-right directions only; the captured pawn is removed from the board. A pawn cannot move without capturing an opposite pawn. Find the least possible number of pawns which can stay on the chessboard.
Kvant 2021, M2651
In a room there are several children and a pile of 1000 sweets. The children come to the pile one after another in some order. Upon reaching the pile each of them divides the current number of sweets in the pile by the number of children in the room, rounds the result if it is not integer, takes the resulting number of sweets from the pile and leaves the room. All the boys round upwards and all the girls round downwards. The process continues until everyone leaves the room. Prove that the total number of sweets received by the boys does not depend on the order in which the children reach the pile.
[i]Maxim Didin[/i]
2007 Hanoi Open Mathematics Competitions, 8
Let $ABC$ be an equilateral triangle. For a point $M$ inside $\vartriangle ABC$, let $D,E,F$ be the feet of the perpendiculars from $M$ onto $BC,CA,AB$, respectively. Find the locus of all such points $M$ for which $\angle FDE$ is a right angle.
2010 IFYM, Sozopol, 8
In the trapezoid $ABCD, AB // CD$ and the diagonals intersect at $O$. The points $P, Q$ are on $AD, BC$ respectively such that $\angle AP B = \angle CP D$ and $\angle AQB = \angle CQD$. Show that $OP = OQ$.
1967 AMC 12/AHSME, 13
A triangle $ABC$ is to be constructed given a side $a$ (oppisite angle $A$). angle $B$, and $h_c$, the altitude from $C$. If $N$ is the number of noncongruent solutions, then $N$
$\textbf{(A)}\ \text{is} \; 1\qquad
\textbf{(B)}\ \text{is} \; 2\qquad
\textbf{(C)}\ \text{must be zero}\qquad
\textbf{(D)}\ \text{must be infinite}\qquad
\textbf{(E)}\ \text{must be zero or infinite}$
VMEO IV 2015, 11.2
Given an isosceles triangle $BAC$ with vertex angle $\angle BAC =20^o$. Construct an equilateral triangle $BDC$ such that $D,A$ are on the same side wrt $BC$. Construct an isosceles triangle $DEB$ with vertex angle $\angle EDB = 80^o$ and $C,E$ are on the different sides wrt $DB$. Prove that the triangle $AEC$ is isosceles at $E$.
2015 Peru IMO TST, 9
Let $A$ be a finite set of functions $f: \Bbb{R}\to \Bbb{R.}$ It is known that: [list] [*] If $f, g\in A$ then $f (g (x)) \in A.$ [*] For all $f \in A$ there exists $g \in A$ such that $f (f (x) + y) = 2x + g (g (y) - x),$ for all $x, y\in \Bbb{R}.$ [/list] Let $i:\Bbb{R}\to \Bbb{R}$ be the identity function, ie, $i (x) = x$ for all $x\in \Bbb{R}.$ Prove that $i \in A.$
2019 Centers of Excellency of Suceava, 2
Let be two real numbers $ b>a>0, $ and a sequence $ \left( x_n \right)_{n\ge 1} $ with $ x_2>x_1>0 $ and such that
$$ ax_{n+2}+bx_n\ge (a+b)x_{n+1} , $$
for any natural numbers $ n. $
Prove that $ \lim_{n\to\infty } x_n=\infty . $
[i]Dan Popescu[/i]
1992 India National Olympiad, 2
If $x , y, z \in \mathbb{R}$ such that $x+y +z =4$ and $x^2 + y^2 +z^2 = 6$, then show that each of $x, y, z$ lies in the closed interval $\left[ \dfrac{2}{3} , 2 \right]$. Can $x$ attain the extreme value $\dfrac{2}{3}$ or $2$?
2021 DIME, 7
In a game, Jimmy and Jacob each randomly choose to either roll a fair six-sided die or to automatically roll a $1$ on their die. If the product of the two numbers face up on their dice is even, Jimmy wins the game. Otherwise, Jacob wins. The probability Jimmy wins $3$ games before Jacob wins $3$ games can be written as $\tfrac{p}{2^q}$, where $p$ and $q$ are positive integers, and $p$ is odd. Find the remainder when $p+q$ is divided by $1000$.
[i]Proposed by firebolt360[/i]
2021 MMATHS, Mixer Round
[b]p1.[/b] Prair takes some set $S$ of positive integers, and for each pair of integers she computes the positive difference between them. Listing down all the numbers she computed, she notices that every integer from $1$ to $10$ is on her list! What is the smallest possible value of $|S|$, the number of elements in her set $S$?
[b]p2.[/b] Jake has $2021$ balls that he wants to separate into some number of bags, such that if he wants any number of balls, he can just pick up some bags and take all the balls out of them. What is the least number of bags Jake needs?
[b]p3.[/b] Claire has stolen Cat’s scooter once again! She is currently at (0; 0) in the coordinate plane, and wants to ride to $(2, 2)$, but she doesn’t know how to get there. So each second, she rides one unit in the positive $x$ or $y$-direction, each with probability $\frac12$ . If the probability that she makes it to $(2, 2)$ during her ride can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $gcd(a, b) = 1$, then find $a + b$.
[b]p4.[/b] Triangle $ABC$ with $AB = BC = 6$ and $\angle ABC = 120^o$ is rotated about $A$, and suppose that the images of points $B$ and $C$ under this rotation are $B'$ and $C'$, respectively. Suppose that $A$, $B'$ and $C$ are collinear in that order. If the area of triangle $B'CC'$ can be expressed as $a - b\sqrt{c}$ for positive integers $a, b, c$ with csquarefree, find $a + b + c$.
[b]p5.[/b] Find the sum of all possible values of $a + b + c + d$ if $a, b, c, $d are positive integers satisfying
$$ab + cd = 100,$$
$$ac + bd = 500.$$
[b]p6.[/b] Alex lives in Chutes and Ladders land, which is set in the coordinate plane. Each step they take brings them one unit to the right or one unit up. However, there’s a chute-ladder between points $(1, 2)$ and $(2, 0)$ and a chute-ladder between points $(1, 3)$ and $(4, 0)$, whenever Alex visits an endpoint on a chute-ladder, they immediately appear at the other endpoint of that chute-ladder! How many ways are there for Alex to go from $(0, 0)$ to $(4, 4)$?
[b]p7.[/b] There are $8$ identical cubes that each belong to $8$ different people. Each person randomly picks a cube. The probability that exactly $3$ people picked their own cube can be written as $\frac{a}{b}$ , where $a$ and $b$ are positive integers with $gcd(a, b) = 1$. Find $a + b$.
[b]p8.[/b] Suppose that $p(R) = Rx^2 + 4x$ for all $R$. There exist finitely many integer values of $R$ such that $p(R)$ intersects the graph of $x^3 + 2021x^2 + 2x + 1$ at some point $(j, k)$ for integers $j$ and $k$. Find the sum of all possible values of $R$.
[b]p9.[/b] Let $a, b, c$ be the roots of the polynomial $x^3 - 20x^2 + 22$. Find $\frac{bc}{a^2} +\frac{ac}{b^2} +\frac{ab}{c^2}$.
[b]p10.[/b] In any finite grid of squares, some shaded and some not, for each unshaded square, record the number of shaded squares horizontally or vertically adjacent to it, this grid’s score is the sum of all numbers recorded this way. Deyuan shades each square in a blank $n \times n$ grid with probability $k$; he notices that the expected value of the score of the resulting grid is equal to $k$, too! Given that $k > 0.9999$, find the minimum possible value of $n$.
[b]p11.[/b] Find the sum of all $x$ from $2$ to $1000$ inclusive such that $$\prod^x_{n=2} \log_{n^n}(n + 1)^{n+2}$$ is an integer.
[b]p12.[/b] Let triangle $ABC$ with incenter $I$ and circumcircle $\Gamma$ satisfy $AB = 6\sqrt3$, $BC = 14$, and $CA = 22$. Construct points $P$ and $Q$ on rays $BA$ and $CA$ such that $BP = CQ = 14$. Lines $PI$ and $QI$ meet the tangents from $B$ and $C$ to $\Gamma$, respectively, at points $X$ and $Y$ . If $XY$ can be expressed as $a\sqrt{b}-c$ for positive integers $a, b, c$ with $c$ squarefree, find $a + b + c$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 Kosovo National Mathematical Olympiad, 3
The doctor instructed a person to take $48$ pills for next $30$ days. Every day he take at least $1$ pill and at most $6$ pills. Show that exist the numbers of conscutive days such that the total numbers of pills he take is equal with $11$.
2019 AMC 8, 14
Isabella has $6$ coupons that can be redeemed for free ice cream cones at Pete's Sweet Treats. In order to make the coupons last, she decides that she will redeem one every 10 days until she has used them all. She knows that Pete's is closed on Sundays, but as she circles the 6 dates on her calender, she realizes that no circled date falls on a Sunday. On what day of the week does Isabella redeem her first coupon?
$\textbf{(A) }\text{Monday}\qquad\textbf{(B) }\text{Tuesday}\qquad\textbf{(C) }\text{Wednesday}\qquad\textbf{(D) }\text{Thursday}\qquad\textbf{(E) }\text{Friday}$
2008 Gheorghe Vranceanu, 2
Show that there is a natural number $ n $ that satisfies the following inequalities:
$$ \sqrt{3} -\frac{1}{10}<\{ n\sqrt 3\} +\{ (n+1)\sqrt 3 \} <\sqrt 3. $$
1994 AMC 8, 18
Mike leaves home and drives slowly east through city traffic. When he reaches the highway he drives east more rapidly until he reaches the shopping mall where he stops. He shops at the mall for an hour. Mike returns home by the same route as he came, driving west rapidly along the highway and then slowly through city traffic. Each graph shows the distance from home on the vertical axis versus the time elapsed since leaving home on the horizontal axis. Which graph is the best representation of Mike's trip?
[asy]
import graph;
unitsize(12);
real a(real x) {return ((x-15)^2)/2;}
real b(real x) {return ((x-25)^2)/2;}
real c(real x) {return ((x-30)^2 * (x-40)^2) * 8/625;}
real d(real x) {return ((x-15)^2)*8/25-15;}
real e(real x) {return ((x-25)^2)*8/25-15;}
draw((0,9)--(0,0)--(11,0));
draw((15,9)--(15,0)--(26,0));
draw((30,9)--(30,0)--(41,0));
draw((0,-6)--(0,-15)--(11,-15));
draw((15,-6)--(15,-15)--(26,-15));
draw((0,0)--(3,8)--(7,8)--(10,0));
draw(graph(a,15,17));
draw((17,2)--(18,8)--(22,8)--(23,2));
draw(graph(b,23,25));
draw(graph(c,30,40));
draw((0,-15)--(5,-7)--(10,-15));
draw(graph(d,15,20));
draw(graph(e,20,25));
for (int k=0; k<3; ++k)
{
label("d",(15*k-1,8),N); label("i",(15*k-1,7),N); label("s",(15*k-1,6),N); label("t",(15*k-1,5),N); label("a",(15*k-1,4),N); label("n",(15*k-1,3),N); label("c",(15*k-1,2),N); label("e",(15*k-1,1),N);
label("time",(15*k+8,0),S);
}
for (int k=0; k<2; ++k)
{
label("d",(15*k-1,8-15),N); label("i",(15*k-1,7-15),N); label("s",(15*k-1,6-15),N); label("t",(15*k-1,5-15),N); label("a",(15*k-1,4-15),N); label("n",(15*k-1,3-15),N); label("c",(15*k-1,2-15),N); label("e",(15*k-1,1-15),N);
label("time",(15*k+8,0-15),S);
}
label("(A)",(5,9),N); label("(B)",(20,9),N); label("(C)",(35,9),N); label("(D)",(5,-6),N); label("(E)",(20,-6),N);
[/asy]
2019 All-Russian Olympiad, 1
There is located real number $f(A)$ in any point A on the plane. It's known that if $M$ will be centroid of triangle $ABC$ then $f(M)=f(A)+f(B)+f(C)$. Prove that $f(A)=0$ for all points A.
1954 Moscow Mathematical Olympiad, 285
The absolute values of all roots of the quadratic equation $x^2+Ax+B = 0$ and $x^2+Cx+D = 0$ are less then $1$. Prove that so are absolute values of the roots of the quadratic equation $x^2 + \frac{A + C}{2} x + \frac{B + D}{2} = 0$.
1979 All Soviet Union Mathematical Olympiad, 277
Given some square carpets with the total area $4$. Prove that they can fully cover the unit square.
2009 USAMTS Problems, 4
Let $ABCDEF$ be a convex hexagon, such that $FA = AB$, $BC = CD$, $DE = EF$, and $\angle FAB = 2\angle EAC$. Suppose that the area of $ABC$ is $25$, the area of $CDE$ is $10$, the area of $EF A$ is $25$, and the area of $ACE$ is $x$. Find, with proof, all possible values of $x$.
2000 Switzerland Team Selection Test, 15
Let $S = \{P_1,P_2,...,P_{2000}\}$ be a set of $2000$ points in the interior of a circle of radius $1$, one of which at its center. For $i = 1,2,...,2000$ denote by $x_i$ the distance from $P_i$ to the closest point $P_j \ne P_i$. Prove that $x_1^2 +x_2^2 +...+x_{2000}^2<9$ .