This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1974 Vietnam National Olympiad, 4

$C$ is a cube side $1$. The $12$ lines containing the sides of the cube meet at plane $p$ in $12$ points. What can you say about the $12$ points?

2014 Harvard-MIT Mathematics Tournament, 6

[5] Find all integers $n$ for which $\frac{n^3+8}{n^2-4}$ is an integer.

2000 Harvard-MIT Mathematics Tournament, 5

Find all $3$-digit numbers which are the sums of the cubes of their digits.

2012 National Olympiad First Round, 33

Let $ABCDA'B'C'D'$ be a rectangular prism with $|AB|=2|BC|$. $E$ is a point on the edge $[BB']$ satisfying $|EB'|=6|EB|$. Let $F$ and $F'$ be the feet of the perpendiculars from $E$ at $\triangle AEC$ and $\triangle A'EC'$, respectively. If $m(\widehat{FEF'})=60^{\circ}$, then $|BC|/|BE| = ? $ $ \textbf{(A)}\ \sqrt\frac53 \qquad \textbf{(B)}\ \sqrt\frac{15}2 \qquad \textbf{(C)}\ \frac32\sqrt{15} \qquad \textbf{(D)}\ 5\sqrt\frac53 \qquad \textbf{(E)}\ \text{None}$

2002 AMC 8, 22

Six cubes, each an inch on an edge, are fastened together, as shown. Find the total surface area in square inches. Include the top, bottom and sides. [asy]/* AMC8 2002 #22 Problem */ draw((0,0)--(0,1)--(1,1)--(1,0)--cycle); draw((0,1)--(0.5,1.5)--(1.5,1.5)--(1,1)); draw((1,0)--(1.5,0.5)--(1.5,1.5)); draw((0.5,1.5)--(1,2)--(1.5,2)); draw((1.5,1.5)--(1.5,3.5)--(2,4)--(3,4)--(2.5,3.5)--(2.5,0.5)--(1.5,.5)); draw((1.5,3.5)--(2.5,3.5)); draw((1.5,1.5)--(3.5,1.5)--(3.5,2.5)--(1.5,2.5)); draw((3,4)--(3,3)--(2.5,2.5)); draw((3,3)--(4,3)--(4,2)--(3.5,1.5)); draw((4,3)--(3.5,2.5)); draw((2.5,.5)--(3,1)--(3,1.5));[/asy] $ \textbf{(A)}\ 18\qquad\textbf{(B)}\ 24\qquad\textbf{(C)}\ 26\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 36$

2015 USAMTS Problems, 2

A net for a polyhedron is cut along an edge to give two [b]pieces[/b]. For example, we may cut a cube net along the red edge to form two pieces as shown. [asy] size(5.5cm); draw((1,0)--(1,4)--(2,4)--(2,0)--cycle); draw((1,1)--(2,1)); draw((1,2)--(2,2)); draw((1,3)--(2,3)); draw((0,1)--(3,1)--(3,2)--(0,2)--cycle); draw((2,1)--(2,2),red+linewidth(1.5)); draw((3.5,2)--(5,2)); filldraw((4.25,2.2)--(5,2)--(4.25,1.8)--cycle,black); draw((6,1.5)--(10,1.5)--(10,2.5)--(6,2.5)--cycle); draw((7,1.5)--(7,2.5)); draw((8,1.5)--(8,2.5)); draw((9,1.5)--(9,2.5)); draw((7,2.5)--(7,3.5)--(8,3.5)--(8,2.5)--cycle); draw((11,1.5)--(11,2.5)--(12,2.5)--(12,1.5)--cycle); [/asy] Are there two distinct polyhedra for which this process may result in the same two pairs of pieces? If you think the answer is no, prove that no pair of polyhedra can result in the same two pairs of pieces. If you think the answer is yes, provide an example; a clear example will suffice as a proof.

1985 IMO Longlists, 93

The sphere inscribed in tetrahedron $ABCD$ touches the sides $ABD$ and $DBC$ at points $K$ and $M$, respectively. Prove that $\angle AKB = \angle DMC$.

1998 Poland - Second Round, 6

Prove that the edges $AB$ and $CD$ of a tetrahedron $ABCD$ are perpendicular if and only if there exists a parallelogram $CDPQ$ such that $PA = PB = PD$ and $QA = QB = QC$.

1969 Poland - Second Round, 6

Prove that every polyhedron has at least two faces with the same number of sides.

1996 China National Olympiad, 3

Suppose that the function $f:\mathbb{R}\to\mathbb{R}$ satisfies \[f(x^3 + y^3)=(x+y)(f(x)^2-f(x)f(y)+f(y)^2)\] for all $x,y\in\mathbb{R}$. Prove that $f(1996x)=1996f(x)$ for all $x\in\mathbb{R}$.

2018 Romania National Olympiad, 4

In the rectangular parallelepiped $ABCDA'B'C'D'$ we denote by $M$ the center of the face $ABB'A'$. We denote by $M_1$ and $M_2$ the projections of $M$ on the lines $B'C$ and $AD'$ respectively. Prove that: a) $MM_1 = MM_2$ b) if $(MM_1M_2) \cap (ABC) = d$, then $d \parallel AD$; c) $\angle (MM_1M_2), (A B C)= 45^ o \Leftrightarrow \frac{BC}{AB}=\frac{BB'}{BC}+\frac{BC}{BB'}$.

1996 AMC 12/AHSME, 28

On a $4 \times 4 \times 3$ rectangular parallelepiped, vertices $A$, $B$, and $C$ are adjacent to vertex $D$. The perpendicular distance from $D$ to the plane containing $A$, $B$, and $C$ is closest to $\text{(A)}\ 1.6 \qquad \text{(B)}\ 1.9 \qquad \text{(C)}\ 2.1 \qquad \text{(D)}\ 2.7 \qquad \text{(E)}\ 2.9$

2023 Olympic Revenge, 3

Define a $\emph{big circle}$ in a sphere as a circle that has two diametrically oposite points of the sphere in it. Suppose $(AB)$ as the big circle that passes through $A$ and $B$. Also, let a $\emph{Spheric Triangle}$ be $3$ connected by big circles. The angle between two circles that intersect is defined by the angle between the two tangent lines from the intersection point through the two circles in their respective planes. Define also $\angle XYZ$ the angle between $(XY)$ and $(YZ)$. Two circles are tangent if the angle between them is 0. All the points in the following problem are in a sphere S. Let $\Delta ABC$ be a spheric triangle with all its angles $<90^{\circ}$ such that there is a circle $\omega$ tangent to $(BC)$,$(CA)$,$(AB)$ in $D,E,F$. Show that there is $P\in S$ with $\angle PAB=\angle DAC$, $\angle PCA=\angle FCB$, $\angle PBA=\angle EBC$.

1989 ITAMO, 3

Prove that, for every tetrahedron $ABCD$, there exists a unique point $P$ in the interior of the tetrahedron such that the tetrahedra $PABC,PABD,PACD,PBCD$ have equal volumes.

2003 AMC 8, 13

Fourteen white cubes are put together to form the fi gure on the right. The complete surface of the figure, including the bottom, is painted red. The figure is then separated into individual cubes. How many of the individual cubes have exactly four red faces? [asy] import three; defaultpen(linewidth(0.8)); real r=0.5; currentprojection=orthographic(3/4,8/15,7/15); draw(unitcube, white, thick(), nolight); draw(shift(1,0,0)*unitcube, white, thick(), nolight); draw(shift(2,0,0)*unitcube, white, thick(), nolight); draw(shift(0,0,1)*unitcube, white, thick(), nolight); draw(shift(2,0,1)*unitcube, white, thick(), nolight); draw(shift(0,1,0)*unitcube, white, thick(), nolight); draw(shift(2,1,0)*unitcube, white, thick(), nolight); draw(shift(0,2,0)*unitcube, white, thick(), nolight); draw(shift(2,2,0)*unitcube, white, thick(), nolight); draw(shift(0,3,0)*unitcube, white, thick(), nolight); draw(shift(0,3,1)*unitcube, white, thick(), nolight); draw(shift(1,3,0)*unitcube, white, thick(), nolight); draw(shift(2,3,0)*unitcube, white, thick(), nolight); draw(shift(2,3,1)*unitcube, white, thick(), nolight);[/asy] $ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 12$

2021 Science ON all problems, 3

$ABCD$ is a scalene tetrahedron and let $G$ be its baricentre. A plane $\alpha$ passes through $G$ such that it intersects neither the interior of $\Delta BCD$ nor its perimeter. Prove that $$\textnormal{dist}(A,\alpha)=\textnormal{dist}(B,\alpha)+\textnormal{dist}(C,\alpha)+\textnormal{dist}(D,\alpha).$$ [i] (Adapted from folklore)[/i]

2019 Puerto Rico Team Selection Test, 6

Starting from a pyramid $T_0$ whose edges are all of length $2019$, we construct the Figure $T_1$ when considering the triangles formed by the midpoints of the edges of each face of $T_0$, building in each of these new pyramid triangles with faces identical to base. Then the bases of these new pyramids are removed. Figure $T_2$ is constructed by applying the same process from $T_1$ on each triangular face resulting from $T_1$, and so on for $T_3, T_4, ...$ Let $D_0= \max \{d(x,y)\}$, where $x$ and $y$ are vertices of $T_0$ and $d(x,y)$ is the distance between $x$ and $y$. Then we define $D_{n + 1} = \max \{d (x, y) |d (x, y) \notin \{D_0, D_1,...,D_n\}$, where $x, y$ are vertices of $T_{n+1}$. Find the value of $D_n$ for all $n$.

2021 AMC 10 Spring, 13

What is the volume of tetrahedron $ABCD$ with edge lengths $AB=2, AC=3, AD=4, BC=\sqrt{13}, BD=2\sqrt{5},$ and $CD=5$? $\textbf{(A) }3 \qquad \textbf{(B) }2\sqrt{3} \qquad \textbf{(C) }4 \qquad \textbf{(D) }3\sqrt{3} \qquad \textbf{(E) }6$

1979 IMO Longlists, 12

We consider a prism which has the upper and inferior basis the pentagons: $A_{1}A_{2}A_{3}A_{4}A_{5}$ and $B_{1}B_{2}B_{3}B_{4}B_{5}$. Each of the sides of the two pentagons and the segments $A_{i}B_{j}$ with $i,j=1,\ldots,5$ is colored in red or blue. In every triangle which has all sides colored there exists one red side and one blue side. Prove that all the 10 sides of the two basis are colored in the same color.

1993 All-Russian Olympiad Regional Round, 11.6

Seven tetrahedra are placed on the table. For any three of them there exists a horizontal plane cutting them in triangles of equal areas. Show that there exists a plane cutting all seven tetrahedra in triangles of equal areas.

2000 Czech And Slovak Olympiad IIIA, 5

Monika made a paper model of a tetrahedron whose base is a right-angled triangle. When she cut the model along the legs of the base and the median of a lateral face corresponding to one of the legs, she obtained a square of side a. Compute the volume of the tetrahedron.

1949 Putnam, A1

Answer either (i) or (ii): (i) Let $a>0.$ Three straight lines pass through the three points $(0,-a,a), (a,0,-a)$ and $(-a,a,0),$ parallel to the $x-,y-$ and $z-$axis, respectively. A variable straight line moves so that it has one point in common with each of the three given lines. Find the equation of the surface described by the variable line. (II) Which planes cut the surface $xy+yz+xz=0$ in (1) circles, (2) parabolas?

Kyiv City MO Seniors 2003+ geometry, 2008.11.4

In the tetrahedron $SABC $ at the height $SH$ the following point $O$ is chosen, such that: $$\angle AOS + \alpha = \angle BOS + \beta = \angle COS + \gamma = 180^o, $$ where $\alpha, \beta, \gamma$ are dihedral angles at the edges $BC, AC, AB $, respectively, at this point $H$ lies inside the base $ABC$. Let ${{A} _ {1}}, \, {{B} _ {1}}, \, {{C} _ {1}} $be the points of intersection of lines and planes: ${{A} _ {1}} = AO \cap SBC $, ${{B} _ {1}} = BO \cap SAC $, ${{C} _ {1}} = CO \cap SBA$ . Prove that if the planes $ABC $ and ${{A} _ {1}} {{B} _ {1}} {{C} _ {1}} $ are parallel, then $SA = SB = SC $. (Alexey Klurman)

2008 Harvard-MIT Mathematics Tournament, 7

([b]5[/b]) Find $ p$ so that $ \lim_{x\rightarrow\infty}x^p\left(\sqrt[3]{x\plus{}1}\plus{}\sqrt[3]{x\minus{}1}\minus{}2\sqrt[3]{x}\right)$ is some non-zero real number.

1983 National High School Mathematics League, 11

For a regular hexahedron and a regular octahedron, all their faces are regular triangles, whose lengths of each side are $a$. Their inradius are $r_1,r_2$. $\frac{r_1}{r_2}=\frac{m}{n}, \gcd(m,n)=1$. Then $mn=$________.