This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

VI Soros Olympiad 1999 - 2000 (Russia), 11.8

Prove that the plane dividing in equal proportions the surface area and volume of the circumscribed polyhedron passes through the center of the sphere inscribed in this polyhedron.

1996 Hungary-Israel Binational, 2

$ n>2$ is an integer such that $ n^2$ can be represented as a difference of cubes of 2 consecutive positive integers. Prove that $ n$ is a sum of 2 squares of positive integers, and that such $ n$ does exist.

1994 Spain Mathematical Olympiad, 2

Let $Oxyz$ be a trihedron whose edges $x,y, z$ are mutually perpendicular. Let $C$ be the point on the ray $z$ with $OC = c$. Points $P$ and $Q$ vary on the rays $x$ and $y$ respectively in such a way that $OP+OQ = k$ is constant. For every $P$ and $Q$, the circumcenter of the sphere through $O,C,P,Q$ is denoted by $W$. Find the locus of the projection of $W$ on the plane O$xy$. Also find the locus of points $W$.

2021 Math Prize for Girls Problems, 19

Let $T$ be a regular tetrahedron. Let $t$ be the regular tetrahedron whose vertices are the centers of the faces of $T$. Let $O$ be the circumcenter of either tetrahedron. Given a point $P$ different from $O$, let $m(P)$ be the midpoint of the points of intersection of the ray $\overrightarrow{OP}$ with $t$ and $T$. Let $S$ be the set of eight points $m(P)$ where $P$ is a vertex of either $t$ or $T$. What is the volume of the convex hull of $S$ divided by the volume of $t$?

2004 Flanders Math Olympiad, 4

Each cell of a beehive is constructed from a right regular 6-angled prism, open at the bottom and closed on the top by a regular 3-sided pyramidical mantle. The edges of this pyramid are connected to three of the rising edges of the prism and its apex $T$ is on the perpendicular line through the center $O$ of the base of the prism (see figure). Let $s$ denote the side of the base, $h$ the height of the cell and $\theta$ the angle between the line $TO$ and $TV$. (a) Prove that the surface of the cell consists of 6 congruent trapezoids and 3 congruent rhombi. (b) the total surface area of the cell is given by the formula $6sh - \dfrac{9s^2}{2\tan\theta} + \dfrac{s^2 3\sqrt{3}}{2\sin\theta}$ [img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=286[/img]

2015 Romania National Olympiad, 3

Let $VABC$ be a regular triangular pyramid with base $ABC$, of center $O$. Points $I$ and $H$ are the center of the inscribed circle, respectively the orthocenter $\vartriangle VBC$. Knowing that $AH = 3 OI$, determine the measure of the angle between the lateral edge of the pyramid and the plane of the base.

1989 Poland - Second Round, 3

Given is a trihedral angle $ OABC $ with a vertex $ O $ and a point $ P $ in its interior. Let $ V $ be the volume of a parallelepiped with two vertices at points $ O $ and $ P $, whose three edges are contained in the rays $ \overrightarrow{OA} $, $ \overrightarrow{OB} $, $ \overrightarrow{OC} $. Calculate the minimum volume of a tetrahedron whose three faces are contained in the faces of the trihedral angle $OABC$ and the fourth face contains the point $P$.

1998 Flanders Math Olympiad, 2

Given a cube with edges of length 1, $e$ the midpoint of $[bc]$, and $m$ midpoint of the face $cdc_1d_1$, as on the figure. Find the area of intersection of the cube with the plane through the points $a,m,e$. [img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=279[/img]

2025 Korea Winter Program Practice Test, P3

$n$ assistants start simultaneously from one vertex of a cube-shaped planet with edge length $1$. Each assistant moves along the edges of the cube at a constant speed of $2, 4, 8, \cdots, 2^n$, and can only change their direction at the vertices of the cube. The assistants can pass through each other at the vertices, but if they collide at any point that is not a vertex, they will explode. Determine the maximum possible value of $n$ such that the assistants can move infinitely without any collisions.

1966 IMO Longlists, 56

In a tetrahedron, all three pairs of opposite (skew) edges are mutually perpendicular. Prove that the midpoints of the six edges of the tetrahedron lie on one sphere.

1966 IMO, 3

Prove that the sum of the distances of the vertices of a regular tetrahedron from the center of its circumscribed sphere is less than the sum of the distances of these vertices from any other point in space.

1986 China Team Selection Test, 2

Given a tetrahedron $ABCD$, $E$, $F$, $G$, are on the respectively on the segments $AB$, $AC$ and $AD$. Prove that: i) area $EFG \leq$ max{area $ABC$,area $ABD$,area $ACD$,area $BCD$}. ii) The same as above replacing "area" for "perimeter".

2002 China Team Selection Test, 2

There are $ n$ points ($ n \geq 4$) on a sphere with radius $ R$, and not all of them lie on the same semi-sphere. Prove that among all the angles formed by any two of the $ n$ points and the sphere centre $ O$ ($ O$ is the vertex of the angle), there is at least one that is not less than $ \displaystyle 2 \arcsin{\frac{\sqrt{6}}{3}}$.

1973 IMO Longlists, 2

Let $OX, OY$ and $OZ$ be three rays in the space, and $G$ a point "[i]between these rays[/i]" (i. e. in the interior of the part of the space bordered by the angles $Y OZ, ZOX$ and $XOY$). Consider a plane passing through $G$ and meeting the rays $OX, OY$ and $OZ$ in the points $A, B, C$, respectively. There are infinitely many such planes; construct the one which minimizes the volume of the tetrahedron $OABC$.

1995 ITAMO, 5

Two non-coplanar circles in space are tangent at a point and have the same tangents at this point. Show that both circles lie on some sphere.

2003 Croatia National Olympiad, Problem 3

In a tetrahedron $ABCD$, all angles at vertex $D$ are equal to $\alpha$ and all dihedral angles between faces having $D$ as a vertex are equal to $\phi$. Prove that there exists a unique $\alpha$ for which $\phi=2\alpha$.

1988 IMO Shortlist, 6

In a given tedrahedron $ ABCD$ let $ K$ and $ L$ be the centres of edges $ AB$ and $ CD$ respectively. Prove that every plane that contains the line $ KL$ divides the tedrahedron into two parts of equal volume.

2009 AMC 12/AHSME, 22

A regular octahedron has side length $ 1$. A plane parallel to two of its opposite faces cuts the octahedron into the two congruent solids. The polygon formed by the intersection of the plane and the octahedron has area $ \frac {a\sqrt {b}}{c}$, where $ a$, $ b$, and $ c$ are positive integers, $ a$ and $ c$ are relatively prime, and $ b$ is not divisible by the square of any prime. What is $ a \plus{} b \plus{} c$? $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 12\qquad \textbf{(D)}\ 13\qquad \textbf{(E)}\ 14$

2008 Iran MO (3rd Round), 6

There are five research labs on Mars. Is it always possible to divide Mars to five connected congruent regions such that each region contains exactly on research lab. [img]http://i37.tinypic.com/f2iq8g.png[/img]

1994 Tournament Of Towns, (432) 2

Prove that one can construct two triangles from six edges of an arbitrary tetrahedron. (VV Proizvolov)

2006 Stanford Mathematics Tournament, 1

Given $ \triangle{ABC}$, where $ A$ is at $ (0,0)$, $ B$ is at $ (20,0)$, and $ C$ is on the positive $ y$-axis. Cone $ M$ is formed when $ \triangle{ABC}$ is rotated about the $ x$-axis, and cone $ N$ is formed when $ \triangle{ABC}$ is rotated about the $ y$-axis. If the volume of cone $ M$ minus the volume of cone $ N$ is $ 140\pi$, find the length of $ \overline{BC}$.

1996 All-Russian Olympiad, 3

Show that for $n\ge 5$, a cross-section of a pyramid whose base is a regular $n$-gon cannot be a regular $(n + 1)$-gon. [i]N. Agakhanov, N. Tereshin[/i]

1974 Spain Mathematical Olympiad, 7

A tank has the shape of a regular hexagonal prism, whose bases are $1$ m on a side and its height is $10$ m. The lateral edges are placed in an oblique position and is partially filled with $9$ m$^3$ of water. The plane of the free surface of the water cuts to all lateral edges. One of them is left with a part of $2$ m under water. What part is under water on the opposite side edge of the prism?

1975 Vietnam National Olympiad, 3

Let $ABCD$ be a tetrahedron with $BA \perp AC,DB \perp (BAC)$. Denote by $O$ the midpoint of $AB$, and $K$ the foot of the perpendicular from $O$ to $DC$. Suppose that $AC = BD$. Prove that $\frac{V_{KOAC}}{V_{KOBD}}=\frac{AC}{BD}$ if and only if $2AC \cdot BD = AB^2$.

2013 German National Olympiad, 4

Let $ABCDEFGH$ be a cube of sidelength $a$ and such that $AG$ is one of the space diagonals. Consider paths on the surface of this cube. Then determine the set of points $P$ on the surface for which the shortest path from $P$ to $A$ and from $P$ to $G$ have the same length $l.$ Also determine all possible values of $l$ depending on $a.$