Found problems: 200
Kharkiv City MO Seniors - geometry, 2012.10.4
In the acute-angled triangle $ABC$ on the sides $AC$ and $BC$, points $D$ and $E$ are chosen such that points $A, B, E$, and $D$ lie on one circle. The circumcircle of triangle $DEC$ intersects side $AB$ at points $X$ and $Y$. Prove that the midpoint of segment $XY$ is the foot of the altitude of the triangle, drawn from point $C$.
2018 Regional Olympiad of Mexico Center Zone, 6
Let $\vartriangle ABC$ be a triangle with orthocenter $H$ and altitudes $AD$, $BE$ and $CF$. Let $D'$, $E' $ and $F'$ be the intersections of the heights $AD$, $BE$ and $CF$, respectively, with the circumcircle of $\vartriangle ABC $, so that they are different points from the vertices of triangle $\vartriangle ABC$. Let $L$, $M$ and $N$ be the midpoints of $BC$, $AC$ and $AB$, respectively. Let $ P$, $Q$ and $R$ be the intersections of the circumcircle with $LH$, $MH$ and $NH$, respectively, such that $ P$ and $ A$ are on opposite sides of $BC$, $Q$ and $A$ are on opposite sides of $AC$ and $R$ and $C$ are on opposite sides of $AB$. Show that there exists a triangle whose sides have the lengths of the segments $D' P$, $E'Q$, and $F'R$.
2011 Sharygin Geometry Olympiad, 6
Let $BB_1$ and $CC_1$ be the altitudes of acute-angled triangle $ABC$, and $A_0$ is the midpoint of $BC$. Lines $A_0B_1$ and $A_0C_1$ meet the line passing through $A$ and parallel to $BC$ in points $P$ and $Q$. Prove that the incenter of triangle $PA_0Q$ lies on the altitude of triangle $ABC$.
2018 Ukraine Team Selection Test, 10
Let $ABC$ be a triangle with $AH$ altitude. The point $K$ is chosen on the segment $AH$ as follows such that $AH =3KH$. Let $O$ be the center of the circle circumscribed around by triangle $ABC, M$ and $N$ be the midpoints of $AC$ and AB respectively. Lines $KO$ and $MN$ intersect at the point $Z$, a perpendicular to $OK$ passing through point $Z$ intersects lines $AC$ and $AB$ at points $X$ and $Y$ respectively. Prove that $\angle XKY =\angle CKB$.
2025 NEPALTST, 3
Consider an acute triangle $\Delta ABC$. Let $D$ and $E$ be the feet of the altitudes from $A$ to $BC$ and from $B$ to $AC$ respectively.
Define $D_1$ and $D_2$ as the reflections of $D$ across lines $AB$ and $AC$, respectively. Let $\Gamma$ be the circumcircle of $\Delta AD_1D_2$. Denote by $P$ the second intersection of line $D_1B$ with $\Gamma$, and by $Q$ the intersection of ray $EB$ with $\Gamma$.
If $O$ is the circumcenter of $\Delta ABC$, prove that $O$, $D$, and $Q$ are collinear if and only if quadrilateral $BCQP$ can be inscribed within a circle.
$\textbf{Proposed by Kritesh Dhakal, Nepal.}$
2009 Belarus Team Selection Test, 3
Points $T,P,H$ lie on the side $BC,AC,AB$ respectively of triangle $ABC$, so that $BP$ and $AT$ are angle bisectors and $CH$ is an altitude of $ABC$. Given that the midpoint of $CH$ belongs to the segment $PT,$ find the value of $\cos A + \cos B$
I. Voronovich
2015 Irish Math Olympiad, 1
In the triangle $ABC$, the length of the altitude from $A$ to $BC$ is equal to $1$. $D$ is the midpoint of $AC$. What are the possible lengths of $BD$?
2025 Junior Macedonian Mathematical Olympiad, 2
Let $B_1$ be the foot of the altitude from the vertex $B$ in the acute-angled $\triangle ABC$. Let $D$ be the midpoint of side $AB$, and $O$ be the circumcentre of $\triangle ABC$. Line $B_1D$ meets line $CO$ at $E$. Prove that the points $B, C, B_1$, and $E$ lie on a circle.
2006 Bosnia and Herzegovina Junior BMO TST, 2
In an acute triangle $ABC$, $\angle C = 60^o$. If $AA'$ and $BB'$ are two of the altitudes and $C_1$ is the midpoint of $AB$, prove that triangle $C_1A'B'$ is equilateral.
2015 Oral Moscow Geometry Olympiad, 6
In an acute-angled isosceles triangle $ABC$, altitudes $CC_1$ and $BB_1$ intersect the line passing through the vertex $A$ and parallel to the line $BC$, at points $P$ and $Q$. Let $A_0$ be the midpoint of side $BC$, and $AA_1$ the altitude. Lines $A_0C_1$ and $A_0B_1$ intersect line $PQ$ at points $K$ and $L$. Prove that the circles circumscribed around triangles $PQA_1, KLA_0, A_1B_1C_1$ and a circle with a diameter $AA_1$ intersect at one point.
2018 Yasinsky Geometry Olympiad, 3
In the triangle $ABC$, $\angle B = 2 \angle C$, $AD$ is altitude, $M$ is the midpoint of the side $BC$. Prove that $AB = 2DM$.
1987 Tournament Of Towns, (133) 2
In an acute angled triangle the feet of the altitudes are joined to form a new triangle. In this new triangle it is known that two sides are parallel to sides of the original triangle . Prove that the third side is also parallel to one of the sides of the original triangle .
2017 India PRMO, 17
Suppose the altitudes of a triangle are $10, 12$ and $15$. What is its semi-perimeter?
2020 Yasinsky Geometry Olympiad, 4
Let $BB_1$ and $CC_1$ be the altitudes of the acute-angled triangle $ABC$. From the point $B_1$ the perpendiculars $B_1E$ and $B_1F$ are drawn on the sides $AB$ and $BC$ of the triangle, respectively, and from the point $C_1$ the perpendiculars $C_1 K$ and $C_1L$ on the sides $AC$ and $BC$, respectively. It turned out that the lines $EF$ and $KL$ are perpendicular. Find the measure of the angle $A$ of the triangle $ABC$.
(Alexander Dunyak)
1987 Tournament Of Towns, (139) 4
Angle $A$ of the acute-angled triangle $ABC$ equals $60^o$ . Prove that the bisector of one of the angles formed by the altitudes drawn from $B$ and $C$, passes through the circumcircle 's centre.
(V . Pogrebnyak , year 12 student , Vinnitsa,)
2010 Ukraine Team Selection Test, 7
Denote in the triangle $ABC$ by $h$ the length of the height drawn from vertex $A$, and by $\alpha = \angle BAC$. Prove that the inequality $AB + AC \ge BC \cdot \cos \alpha + 2h \cdot \sin \alpha$ . Are there triangles for which this inequality turns into equality?
2012 Tournament of Towns, 7
Let $AH$ be an altitude of an equilateral triangle $ABC$. Let $I$ be the incentre of triangle $ABH$, and let $L, K$ and $J$ be the incentres of triangles $ABI,BCI$ and $CAI$ respectively. Determine $\angle KJL$.
Estonia Open Senior - geometry, 2009.2.4
a) An altitude of a triangle is also a tangent to its circumcircle. Prove that some angle of the triangle is larger than $90^o$ but smaller than $135^o$.
b) Some two altitudes of the triangle are both tangents to its circumcircle. Find the angles of the triangle.
2025 Macedonian Balkan MO TST, 2
Let $\triangle ABC$ be an acute-angled triangle and $A_1, B_1$, and $C_1$ be the feet of the altitudes from $A, B$, and $C$, respectively. On the rays $AA_1, BB_1$, and $CC_1$, we have points $A_2, B_2$, and $C_2$ respectively, lying outside of $\triangle ABC$, such that
\[\frac{A_1A_2}{AA_1} = \frac{B_1B_2}{BB_1} = \frac{C_1C_2}{CC_1}.\]
If the intersections of $B_1C_2$ and $B_2C_1$, $C_1A_2$ and $C_2A_1$, and $A_1B_2$ and $A_2B_1$ are $A', B'$, and $C'$ respectively, prove that $AA', BB'$, and $CC'$ have a common point.
Russian TST 2015, P2
Given an acute triangle $ABC, H$ is the foot of the altitude drawn from the point $A$ on the line $BC, P$ and $K \ne H$ are arbitrary points on the segments $AH$ and$ BC$ respectively. Segments $AC$ and $BP$ intersect at point $B_1$, lines $AB$ and $CP$ at point $C_1$. Let $X$ and $Y$ be the projections of point $H$ on the lines $KB_1$ and $KC_1$, respectively. Prove that points $A, P, X$ and $Y$ lie on one circle.
2025 Bangladesh Mathematical Olympiad, P9
Let $ABC$ be an acute triangle and $D$ be the foot of the altitude from $A$ onto $BC$. A semicircle with diameter $BC$ intersects segments $AB, AC$ and $AD$ in the points $F, E$ and $X$, respectively. The circumcircles of the triangles $DEX$ and $DXF$ intersect $BC$ in $L$ and $N$, respectively, other than $D$. Prove that $BN = LC$.
1988 Tournament Of Towns, (185) 2
In a triangle two altitudes are not smaller than the sides on to which they are dropped. Find the angles of the triangle.
1996 Israel National Olympiad, 3
The angles of an acute triangle $ABC$ at $\alpha , \beta, \gamma$. Let $AD$ be a height, $CF$ a median, and $BE$ the bisector of $\angle B$. Show that $AD,CF$ and $BE$ are concurrent if and only if $\cos \gamma \tan\beta = \sin \alpha$ .
1990 All Soviet Union Mathematical Olympiad, 532
If every altitude of a tetrahedron is at least $1$, show that the shortest distance between each pair of opposite edges is more than $2$.
2011 Sharygin Geometry Olympiad, 7
Point $O$ is the circumcenter of acute-angled triangle $ABC$, points $A_1,B_1, C_1$ are the bases of its altitudes. Points $A', B', C'$ lying on lines $OA_1, OB_1, OC_1$ respectively are such that quadrilaterals $AOBC', BOCA', COAB'$ are cyclic. Prove that the circumcircles of triangles $AA_1A', BB_1B', CC_1C'$ have a common point.