This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 200

2000 Saint Petersburg Mathematical Olympiad, 10.2

Let $AA_1$ and $BB_1$ be the altitudes of acute angled triangle $ABC$. Points $K$ and $M$ are midpoints of $AB$ and $A_1B_1$ respectively. Segments $AA_1$ and $KM$ intersect at point $L$. Prove that points $A$, $K$, $L$ and $B_1$ are noncyclic. [I]Proposed by S. Berlov[/i]

2020 Tournament Of Towns, 2

At heights $AA_0, BB_0, CC_0$ of an acute-angled non-equilateral triangle $ABC$, points $A_1, B_1, C_1$ were marked, respectively, so that $AA_1 = BB_1 = CC_1 = R$, where $R$ is the radius of the circumscribed circle of triangle $ABC$. Prove that the center of the circumscribed circle of the triangle $A_1B_1C_1$ coincides with the center of the inscribed circle of triangle $ABC$. E. Bakaev

2011 Sharygin Geometry Olympiad, 19

Does there exist a nonisosceles triangle such that the altitude from one vertex, the bisectrix from the second one and the median from the third one are equal?

1935 Moscow Mathematical Olympiad, 008

Prove that if the lengths of the sides of a triangle form an arithmetic progression, then the radius of the inscribed circle is one third of one of the heights of the triangle.

Ukrainian TYM Qualifying - geometry, 2019.10

At the altitude $AH_1$ of an acute non-isosceles triangle $ABC$ chose a point $X$ , from which draw the perpendiculars $XN$ and $XM$ on the sides $AB$ and $AC$ respectively. It turned out that $H_1A$ is the angle bisector $MH_1N$. Prove that $X$ is the point of intersection of the altitudes of the triangle $ABC$.

Denmark (Mohr) - geometry, 2006.5

We consider an acute triangle $ABC$. The altitude from $A$ is $AD$, the altitude from $D$ in triangle $ABD$ is $DE,$ and the altitude from $D$ in triangle $ACD$ is $DF$. a) Prove that the triangles $ABC$ and $AF E$ are similar. b) Prove that the segment $EF$ and the corresponding segments constructed from the vertices $B$ and $C$ all have the same length.

1972 IMO Longlists, 21

Prove the following assertion: The four altitudes of a tetrahedron $ABCD$ intersect in a point if and only if \[AB^2 + CD^2 = BC^2 + AD^2 = CA^2 + BD^2.\]

1993 Italy TST, 3

Let $ABC$ be an isosceles triangle with base $AB$ and $D$ be a point on side $AB$ such that the incircle of triangle $ACD$ is congruent to the excircle of triangle $DCB$ across $C$. Prove that the diameter of each of these circles equals half the altitude of $\vartriangle ABC$ from $A$

2017 Puerto Rico Team Selection Test, 2

For an acute triangle $ ABC $ let $ H $ be the point of intersection of the altitudes $ AA_1 $, $ BB_1 $, $ CC_1 $. Let $ M $ and $ N $ be the midpoints of the $ BC $ and $ AH $ segments, respectively. Show that $ MN $ is the perpendicular bisector of segment $ B_1C_1 $.

2010 Sharygin Geometry Olympiad, 5

Let $AH$, $BL$ and $CM$ be an altitude, a bisectrix and a median in triangle $ABC$. It is known that lines $AH$ and $BL$ are an altitude and a bisectrix of triangle $HLM$. Prove that line $CM$ is a median of this triangle.

2020 Malaysia IMONST 1, 18

In a triangle, the ratio of the interior angles is $1 : 5 : 6$, and the longest side has length $12$. What is the length of the altitude (height) of the triangle that is perpendicular to the longest side?

2013 Junior Balkan Team Selection Tests - Romania, 4

In the acute-angled triangle $ABC$, with $AB \ne AC$, $D$ is the foot of the angle bisector of angle $A$, and $E, F$ are the feet of the altitudes from $B$ and $C$, respectively. The circumcircles of triangles $DBF$ and $DCE$ intersect for the second time at $M$. Prove that $ME = MF$. Leonard Giugiuc

2019 Ukraine Team Selection Test, 3

Given an acute triangle $ABC$ . It's altitudes $AA_1 , BB_1$ and $CC_1$ intersect at a point $H$ , the orthocenter of $\vartriangle ABC$. Let the lines $B_1C_1$ and $AA_1$ intersect at a point $K$, point $M$ be the midpoint of the segment $AH$. Prove that the circumscribed circle of $\vartriangle MKB_1$ touches the circumscribed circle of $\vartriangle ABC$ if and only if $BA1 = 3A1C$. (Bondarenko Mykhailo)

2006 Sharygin Geometry Olympiad, 12

In the triangle $ABC$, the bisector of angle $A$ is equal to the half-sum of the height and median drawn from vertex $A$. Prove that if $\angle A$ is obtuse, then $AB = AC$.

2006 Dutch Mathematical Olympiad, 2

Tags: geometry , altitude
Given is a acute angled triangle $ABC$. The lengths of the altitudes from $A, B$ and $C$ are successively $h_A, h_B$ and $h_C$. Inside the triangle is a point $P$. The distance from $P$ to $BC$ is $1/3 h_A$ and the distance from $P$ to $AC$ is $1/4 h_B$. Express the distance from $P$ to $AB$ in terms of $h_C$.

2009 Federal Competition For Advanced Students, P1, 4

Let $D, E$, and $F$ be respectively the midpoints of the sides $BC, CA$, and $AB$ of $\vartriangle ABC$. Let $H_a, H_b, H_c$ be the feet of perpendiculars from $A, B, C$ to the opposite sides, respectively. Let $P, Q, R$ be the midpoints of the $H_bH_c, H_cH_a$, and $H_aH_b$ respectively. Prove that $PD, QE$, and $RF$ are concurrent.

2018 Austria Beginners' Competition, 2

Let $ABC$ be an acute-angled triangle, $M$ the midpoint of the side $AC$ and $F$ the foot on $AB$ of the altitude through the vertex $C$. Prove that $AM = AF$ holds if and only if $\angle BAC = 60^o$. (Karl Czakler)

2011 Tournament of Towns, 3

In triangle $ABC$, points $A_1,B_1,C_1$ are bases of altitudes from vertices $A,B,C$, and points $C_A,C_B$ are the projections of $C_1$ to $AC$ and $BC$ respectively. Prove that line $C_AC_B$ bisects the segments $C_1A_1$ and $C_1B_1$.

1956 Moscow Mathematical Olympiad, 333

Let $O$ be the center of the circle circumscribed around $\vartriangle ABC$, let $A_1, B_1, C_1$ be symmetric to $O$ through respective sides of $\vartriangle ABC$. Prove that all altitudes of $\vartriangle A_1B_1C_1$ pass through $O$, and all altitudes of $\vartriangle ABC$ pass through the center of the circle circumscribed around $\vartriangle A_1B_1C_1$.

2000 Saint Petersburg Mathematical Olympiad, 11.5

Let $AA_1$, $BB_1$, $CC_1$ be the altitudes of an acute angled triangle $ABC$. On the side $BC$ point $K$ is taken such that $\angle BB_1K=\angle A$. On the side $AB$ a point $M$ is taken such that $\angle BB_1M\angle C$. Let $L$ be the intersection of $BB_1$ and $A_1C_1$. Prove that the quadrilateral $B_1KLM$ is circumscribed. [I]Proposed by A. Khrabrov, D. Rostovski[/i]

1992 Czech And Slovak Olympiad IIIA, 6

Let $ABC$ be an acute triangle. The altitude from $B$ meets the circle with diameter $AC$ at points $P,Q$, and the altitude from $C$ meets the circle with diameter $AB$ at $M,N$. Prove that the points $M,N,P,Q$ lie on a circle.

2016 Latvia Baltic Way TST, 15

Let $ABC$ be a triangle. Let its altitudes $AD$, $BE$ and $CF$ concur at $H$. Let $K, L$ and $M$ be the midpoints of $BC$, $CA$ and $AB$, respectively. Prove that, if $\angle BAC = 60^o$, then the midpoints of the segments $AH$, $DK$, $EL$, $FM$ are concyclic.

2003 Bosnia and Herzegovina Team Selection Test, 4

In triangle $ABC$ $AD$ and $BE$ are altitudes. Let $L$ be a point on $ED$ such that $ED$ is orthogonal to $BL$. If $LB^2=LD\cdot LE$ prove that triangle $ABC$ is isosceles

2020 Ukrainian Geometry Olympiad - December, 5

In an acute triangle $ABC$ with an angle $\angle ACB =75^o$, altitudes $AA_3,BB_3$ intersect the circumscribed circle at points $A_1,B_1$ respectively. On the lines $BC$ and $CA$ select points $A_2$ and $B_2$ respectively suchthat the line $B_1B_2$ is parallel to the line $BC$ and the line $A_1A_2$ is parallel to the line $AC$ . Let $M$ be the midpoint of the segment $A_2B_2$. Find in degrees the measure of the angle $\angle B_3MA_3$.

2006 Denmark MO - Mohr Contest, 5

We consider an acute triangle $ABC$. The altitude from $A$ is $AD$, the altitude from $D$ in triangle $ABD$ is $DE,$ and the altitude from $D$ in triangle $ACD$ is $DF$. a) Prove that the triangles $ABC$ and $AF E$ are similar. b) Prove that the segment $EF$ and the corresponding segments constructed from the vertices $B$ and $C$ all have the same length.