This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

2020 Estonia Team Selection Test, 2

Let $n$ be an integer, $n \ge 3$. Select $n$ points on the plane, none of which are three on the same line. Consider all triangles with vertices at selected points, denote the smallest of all the interior angles of these triangles by the variable $\alpha$. Find the largest possible value of $\alpha$ and identify all the selected $n$ point placements for which the max occurs.

2005 Sharygin Geometry Olympiad, 24

A triangle is given, all the angles of which are smaller than $\phi$, where $\phi <2\pi / 3$. Prove that in space there is a point from which all sides of the triangle are visible at an angle $\phi$.

Novosibirsk Oral Geo Oly VII, 2023.6

An isosceles triangle $ABC$ with base $AC$ is given. On the rays $CA$, $AB$ and $BC$, the points $D, E$ and $F$ were marked, respectively, in such a way that $AD = AC$, $BE = BA$ and $CF = CB$. Find the sum of the angles $\angle ADB$, $\angle BEC$ and $\angle CFA$.

1986 All Soviet Union Mathematical Olympiad, 440

Consider all the tetrahedrons $AXBY$, circumscribed around the sphere. Let $A$ and $B$ points be fixed. Prove that the sum of angles in the non-plane quadrangle $AXBY$ doesn't depend on points $X$ and $Y$ .

2019 BMT Spring, 5

Tags: geometry , angle , area
Point $P$ is $\sqrt3$ units away from plane $A$. Let $Q$ be a region of $A$ such that every line through $P$ that intersects $A$ in $Q$ intersects $A$ at an angle between $30^o$ and $60^o$ . What is the largest possible area of $Q$?

2015 Indonesia MO Shortlist, G1

Given a cyclic quadrilateral $ABCD$ so that $AB = AD$ and $AB + BC <CD$. Prove that the angle $ABC$ is more than $120$ degrees.

2015 EGMO, 6

Let $H$ be the orthocentre and $G$ be the centroid of acute-angled triangle $ABC$ with $AB\ne AC$. The line $AG$ intersects the circumcircle of $ABC$ at $A$ and $P$. Let $P'$ be the reflection of $P$ in the line $BC$. Prove that $\angle CAB = 60$ if and only if $HG = GP'$

2020-21 KVS IOQM India, 27

Let $ABC$ be an acute-angled triangle and $P$ be a point in its interior. Let $P_A,P_B$ and $P_c$ be the images of $P$ under reflection in the sides $BC,CA$, and $AB$, respectively. If $P$ is the orthocentre of the triangle $P_AP_BP_C$ and if the largest angle of the triangle that can be formed by the line segments$ PA, PB$. and $PC$ is $x^o$, determine the value of $x$.

Kyiv City MO Juniors Round2 2010+ geometry, 2013.7.3

In the square $ABCD$ on the sides $AD$ and $DC$, the points $M$ and $N$ are selected so that $\angle BMA = \angle NMD = 60 { } ^ \circ $. Find the value of the angle $MBN$.

2004 Germany Team Selection Test, 2

Let $n \geq 5$ be a given integer. Determine the greatest integer $k$ for which there exists a polygon with $n$ vertices (convex or not, with non-selfintersecting boundary) having $k$ internal right angles. [i]Proposed by Juozas Juvencijus Macys, Lithuania[/i]

2021 Yasinsky Geometry Olympiad, 3

The segments $AC$ and $BD$ are perpendicular, and $AC$ is twice as large as $BD$ and intersects $BD$ in it in the midpoint. Find the value of the angle $BAD$, if we know that $\angle CAD = \angle CDB$. (Gregory Filippovsky)

2021 Malaysia IMONST 2, 1

Tags: geometry , circles , angle
Given a circle with center $O$. Points $A$ and $B$ lie on the circle such that triangle $OBA$ is equilateral. Let $C$ be a point outside the circle with $\angle ACB = 45^{\circ}$. Line $CA$ intersects the circle at point $D$, and the line $CB$ intersects the circle at point $E$. Find $\angle DBE$.

May Olympiad L2 - geometry, 2022.3

Tags: angle , geometry
Let $ABCD$ be a square, $E$ a point on the side $CD$, and $F$ a point inside the square such that that triangle $BFE$ is isosceles and $\angle BFE = 90^o$ . If $DF=DE$, find the measure of angle $\angle FDE$.

Kyiv City MO Juniors Round2 2010+ geometry, 2019.8.4

In the triangle $ABC$ it is known that$\angle A = 75^o, \angle C = 45^o$. On the ray $BC$ beyond the point $C$ the point $T$ is taken so that $BC = CT$. Let $M$ be the midpoint of the segment $AT$. Find the measure of the $\angle BMC$. (Anton Trygub)

2013 Saudi Arabia GMO TST, 2

Find all values of $n$ for which there exists a convex cyclic non-regular polygon with $n$ vertices such that the measures of all its internal angles are equal.

1993 Rioplatense Mathematical Olympiad, Level 3, 6

Let $ABCDE$ be pentagon such that $AE = ED$ and $BC = CD$. It is known that $\angle BAE + \angle EDC + \angle CB A = 360^o$ and that $P$ is the midpoint of $AB$. Show that the triangle $ECP$ is right.

2003 Estonia National Olympiad, 3

Let $ABC$ be a triangle with $\angle C = 90^o$ and $D$ a point on the ray $CB$ such that $|AC| \cdot |CD| = |BC|^2$. A parallel line to $AB$ through $D$ intersects the ray $CA$ at $E$. Find $\angle BEC$.

2020 Ukrainian Geometry Olympiad - December, 4

In an isosceles triangle $ABC$ with an angle $\angle A= 20^o$ and base $BC=12$ point $E$ on the side $AC$ is chosen such that $\angle ABE= 30^o$ , and point $F$ on the side $AB$ such that $EF = FC$ . Find the length of $FC$.

2020 Yasinsky Geometry Olympiad, 2

Tags: geometry , angle
It is known that the angles of the triangle $ABC$ are $1: 3: 5$. Find the angle between the bisector of the largest angle of the triangle and the line containing the altitude drawn to the smallest side of the triangle.

2011 Tournament of Towns, 5

In the plane are $10$ lines in general position, which means that no $2$ are parallel and no $3$ are concurrent. Where $2$ lines intersect, we measure the smaller of the two angles formed between them. What is the maximum value of the sum of the measures of these $45$ angles?

1985 Tournament Of Towns, (106) 6

In triangle $ABC, AH$ is an altitude ($H$ is on $BC$) and $BE$ is a bisector ($E$ is on $AC$) . We are given that angle $BEA$ equals $45^o$ .Prove that angle $EHC$ equals $45^o$ . (I. Sharygin , Moscow)

1953 Moscow Mathematical Olympiad, 233

Prove that the sum of angles at the longer base of a trapezoid is less than the sum of angles at the shorter base.

2011 AMC 12/AHSME, 10

Rectangle $ABCD$ has $AB=6$ and $BC=3$. Point $M$ is chosen on side $AB$ so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$? $ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 60 \qquad \textbf{(E)}\ 75 $

1999 Harvard-MIT Mathematics Tournament, 11

Tags: geometry , hmmt , angle , circles
Circles $C_1$, $C_2$, $C_3$ have radius $ 1$ and centers $O, P, Q$ respectively. $C_1$ and $C_2$ intersect at $A$, $C_2$ and $C_3$ intersect at $B$, $C_3$ and $C_1$ intersect at $C$, in such a way that $\angle APB = 60^o$ , $\angle BQC = 36^o$ , and $\angle COA = 72^o$ . Find angle $\angle ABC$ (degrees).

2011 Saudi Arabia BMO TST, 3

Consider a triangle $ABC$. Let $A_1$ be the symmetric point of $A$ with respect to the line $BC$, $B_1$ the symmetric point of $B$ with respect to the line $CA$, and $C_1$ the symmetric point of $C$ with respect to the line $AB$. Determine the possible set of angles of triangle $ABC$ for which $A_1B_1C_1$ is equilateral.