This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1065

2001 Italy TST, 1

The diagonals $ AC$ and $ BD$ of a convex quadrilateral $ ABCD$ intersect at point $ M$. The bisector of $ \angle ACD$ meets the ray $ BA$ at $ K$. Given that $ MA \cdot MC \plus{}MA \cdot CD \equal{} MB \cdot MD$, prove that $ \angle BKC \equal{} \angle CDB$.

Kharkiv City MO Seniors - geometry, 2019.10.5

In triangle $ABC$, point$ I$ is incenter , $I_a$ is the $A$-excenter. Let $K$ be the intersection point of the $BC$ with the external bisector of the angle $BAC$, and $E$ be the midpoint of the arc $BAC$ of the circumcircle of triangle $ABC$. Prove that $K$ is the orthocenter of triangle $II_aE$.

Estonia Open Senior - geometry, 2016.1.5

The bisector of the angle $A$ of the triangle $ABC$ intersects the side $BC$ at $D$. A circle $c$ through the vertex $A$ touches the side $BC$ at $D$. Prove that the circumcircle of the triangle $ABC$ touches the circle $c$ at $A$.

1999 Czech And Slovak Olympiad IIIA, 5

Given an acute angle $APX$ in the plane, construct a square $ABCD$ such that $P$ lies on the side $BC$ and ray $PX$ meets $CD$ in a point $Q$ such that $AP$ bisects the angle $BAQ$.

2004 IMO, 1

1. Let $ABC$ be an acute-angled triangle with $AB\neq AC$. The circle with diameter $BC$ intersects the sides $AB$ and $AC$ at $M$ and $N$ respectively. Denote by $O$ the midpoint of the side $BC$. The bisectors of the angles $\angle BAC$ and $\angle MON$ intersect at $R$. Prove that the circumcircles of the triangles $BMR$ and $CNR$ have a common point lying on the side $BC$.

2017 Argentina National Math Olympiad Level 2, 5

Let $ABCD$ be a convex quadrilateral with $AB = BD = 8$ and $CD = DA = 6$. Let $P$ be a point on side $AB$ such that $DP$ is bisector of angle $\angle ADB$ and let $Q$ be a point on side $BC$ such that $DQ$ is bisector of angle $\angle CDB$. Calculate the radius of the circumcircle of triangle $DPQ$. Note: The circumcircle of a triangle is the circle that passes through its three vertices.

1962 IMO Shortlist, 5

On the circle $K$ there are given three distinct points $A,B,C$. Construct (using only a straightedge and a compass) a fourth point $D$ on $K$ such that a circle can be inscribed in the quadrilateral thus obtained.

2015 Regional Olympiad of Mexico Center Zone, 2

In the triangle $ABC$, we have that $\angle BAC$ is acute. Let $\Gamma$ be the circle that passes through $A$ and is tangent to the side $BC$ at $C$. Let $M$ be the midpoint of $BC$ and let $D$ be the other point of intersection of $\Gamma$ with $AM$. If $BD$ cuts back to$ \Gamma$ at $E$, show that $AC$ is the bisector of $\angle BAE$.

1992 IMO Shortlist, 7

Two circles $ \Omega_{1}$ and $ \Omega_{2}$ are externally tangent to each other at a point $ I$, and both of these circles are tangent to a third circle $ \Omega$ which encloses the two circles $ \Omega_{1}$ and $ \Omega_{2}$. The common tangent to the two circles $ \Omega_{1}$ and $ \Omega_{2}$ at the point $ I$ meets the circle $ \Omega$ at a point $ A$. One common tangent to the circles $ \Omega_{1}$ and $ \Omega_{2}$ which doesn't pass through $ I$ meets the circle $ \Omega$ at the points $ B$ and $ C$ such that the points $ A$ and $ I$ lie on the same side of the line $ BC$. Prove that the point $ I$ is the incenter of triangle $ ABC$. [i]Alternative formulation.[/i] Two circles touch externally at a point $ I$. The two circles lie inside a large circle and both touch it. The chord $ BC$ of the large circle touches both smaller circles (not at $ I$). The common tangent to the two smaller circles at the point $ I$ meets the large circle at a point $ A$, where the points $ A$ and $ I$ are on the same side of the chord $ BC$. Show that the point $ I$ is the incenter of triangle $ ABC$.

2014 Contests, 1

Let $ABC$ be a triangle with $AB>AC$. Let $D$ be the foot of the internal angle bisector of $A$. Points $F$ and $E$ are on $AC,AB$ respectively such that $B,C,F,E$ are concyclic. Prove that the circumcentre of $DEF$ is the incentre of $ABC$ if and only if $BE+CF=BC$.

2015 Oral Moscow Geometry Olympiad, 4

In trapezoid $ABCD$, the bisectors of angles $A$ and $D$ intersect at point $E$ lying on the side of $BC$. These bisectors divide the trapezoid into three triangles into which the circles are inscribed. One of these circles touches the base $AB$ at the point $K$, and two others touch the bisector $DE$ at points $M$ and $N$. Prove that $BK = MN$.

2002 IberoAmerican, 1

In a triangle $\triangle{ABC}$ with all its sides of different length, $D$ is on the side $AC$, such that $BD$ is the angle bisector of $\sphericalangle{ABC}$. Let $E$ and $F$, respectively, be the feet of the perpendicular drawn from $A$ and $C$ to the line $BD$ and let $M$ be the point on $BC$ such that $DM$ is perpendicular to $BC$. Show that $\sphericalangle{EMD}=\sphericalangle{DMF}$.

2012 Turkey Team Selection Test, 1

In a triangle $ABC,$ incircle touches the sides $BC, CA, AB$ at $D, E, F,$ respectively. A circle $\omega$ passing through $A$ and tangent to line $BC$ at $D$ intersects the line segments $BF$ and $CE$ at $K$ and $L,$ respectively. The line passing through $E$ and parallel to $DL$ intersects the line passing through $F$ and parallel to $DK$ at $P.$ If $R_1, R_2, R_3, R_4$ denotes the circumradius of the triangles $AFD, AED, FPD, EPD,$ respectively, prove that $R_1R_4=R_2R_3.$

2012 India Regional Mathematical Olympiad, 5

Let $AL$ and $BK$ be the angle bisectors in a non-isosceles triangle $ABC,$ where $L$ lies on $BC$ and $K$ lies on $AC.$ The perpendicular bisector of $BK$ intersects the line $AL$ at $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK.$ Prove that $LN=NA.$

1910 Eotvos Mathematical Competition, 3

The lengths of sides $CB$ and $CA$ of $\vartriangle ABC$ are $a$ and $b$, and the angle between them is $\gamma = 120^o$. Express the length of the bisector of $\gamma$ in terms of $a$ and $b$.

2017 Ukrainian Geometry Olympiad, 4

Let $AD$ be the inner angle bisector of the triangle $ABC$. The perpendicular on the side $BC$ at the point $D$ intersects the outer bisector of $\angle CAB$ at point $I$. The circle with center $I$ and radius $ID$ intersects the sides $AB$ and $AC$ at points $F$ and $E$ respectively. $A$-symmedian of $\Delta AFE$ intersects the circumcircle of $\Delta AFE$ again at point $X$. Prove that the circumcircles of $\Delta AFE$ and $\Delta BXC$ are tangent.

2012 Junior Balkan Team Selection Tests - Moldova, 3

Let $ ABC $ be an isosceles triangle with $ AC=BC $ . Take points $ D $ on side $AC$ and $E$ on side $BC$ and $ F $ the intersection of bisectors of angles $ DEB $ and $ADE$ such that $ F$ lies on side $AB$. Prove that $F$ is the midpoint of $AB$.

Ukrainian TYM Qualifying - geometry, 2020.11

In the acute-angled triangle $ABC$, the segment $AP$ was drawn and the center was marked $O$ of the circumscribed circle. The circumcircle of triangle $ABP$ intersects the line $AC$ for the second time at point $X$, the circumcircle of the triangle $ACP$ intersects the line $AB$ for the second time at the point $Y$. Prove that the lines $XY$ and $PO$ are perpendicular if and only if $P$ is the foor of the bisector of the triangle $ABC$.

2004 IMO Shortlist, 1

1. Let $ABC$ be an acute-angled triangle with $AB\neq AC$. The circle with diameter $BC$ intersects the sides $AB$ and $AC$ at $M$ and $N$ respectively. Denote by $O$ the midpoint of the side $BC$. The bisectors of the angles $\angle BAC$ and $\angle MON$ intersect at $R$. Prove that the circumcircles of the triangles $BMR$ and $CNR$ have a common point lying on the side $BC$.

2015 Taiwan TST Round 3, 2

Let $\Omega$ and $O$ be the circumcircle and the circumcentre of an acute-angled triangle $ABC$ with $AB > BC$. The angle bisector of $\angle ABC$ intersects $\Omega$ at $M \ne B$. Let $\Gamma$ be the circle with diameter $BM$. The angle bisectors of $\angle AOB$ and $\angle BOC$ intersect $\Gamma$ at points $P$ and $Q,$ respectively. The point $R$ is chosen on the line $P Q$ so that $BR = MR$. Prove that $BR\parallel AC$. (Here we always assume that an angle bisector is a ray.) [i]Proposed by Sergey Berlov, Russia[/i]

2017 Bosnia And Herzegovina - Regional Olympiad, 2

In triangle $ABC$ on side $AC$ are points $K$, $L$ and $M$ such that $BK$ is an angle bisector of $\angle ABL$, $BL$ is an angle bisector of $\angle KBM$ and $BM$ is an angle bisector of $\angle LBC$, respectively. Prove that $4 \cdot LM <AC$ and $3\cdot \angle BAC - \angle ACB < 180^{\circ}$

2001 Argentina National Olympiad, 2

Let $\vartriangle ABC$ be a triangle such that angle $\angle ABC$ is less than angle $\angle ACB$. The bisector of angle $\angle BAC$ cuts side $BC$ at $D$. Let $E$ be on side $AB$ such that $\angle EDB = 90^o$ and $F$ on side $AC$ such that $\angle BED = \angle DEF$. Prove that $\angle BAD = \angle FDC$.

2007 Bosnia Herzegovina Team Selection Test, 5

Triangle $ABC$ is right angled such that $\angle ACB=90^{\circ}$ and $\frac {AC}{BC} = 2$. Let the line parallel to side $AC$ intersects line segments $AB$ and $BC$ in $M$ and $N$ such that $\frac {CN}{BN} = 2$. Let $O$ be the intersection point of lines $CM$ and $AN$. On segment $ON$ lies point $K$ such that $OM+OK=KN$. Let $T$ be the intersection point of angle bisector of $\angle ABC$ and line from $K$ perpendicular to $AN$. Determine value of $\angle MTB$.

2001 Polish MO Finals, 2

Let $ABCD$ be a parallelogram and let $K$ and $L$ be points on the segments $BC$ and $CD$, respectively, such that $BK\cdot AD=DL\cdot AB$. Let the lines $DK$ and $BL$ intersect at $P$. Show that $\measuredangle DAP=\measuredangle BAC$.

2013 National Olympiad First Round, 1

Let $ABC$ be a triangle with incenter $I$, centroid $G$, and $|AC|>|AB|$. If $IG\parallel BC$, $|BC|=2$, and $Area(ABC)=3\sqrt 5 / 8$, then what is $|AB|$? $ \textbf{(A)}\ \dfrac 98 \qquad\textbf{(B)}\ \dfrac {11}8 \qquad\textbf{(C)}\ \dfrac {13}8 \qquad\textbf{(D)}\ \dfrac {15}8 \qquad\textbf{(E)}\ \dfrac {17}8 $