This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

1974 All Soviet Union Mathematical Olympiad, 202

Given a convex polygon. You can put no triangle with area $1$ inside it. Prove that you can put the polygon inside a triangle with the area $4$.

2016 Auckland Mathematical Olympiad, 3

Tags: square , geometry , area
Triangle $XYZ$ is inside square $KLMN$ shown below so that its vertices each lie on three different sides of the square. It is known that: $\bullet$ The area of square $KLMN$ is $1$. $\bullet$ The vertices of the triangle divide three sides of the square up into these ratios: $KX : XL = 3 : 2$ $KY : YN = 4 : 1$ $NZ : ZM = 2 : 3$ What is the area of the triangle $XYZ$? (Note that the sketch is not drawn to scale). [img]https://cdn.artofproblemsolving.com/attachments/8/0/38e76709373ba02346515f9949ce4507ed4f8f.png[/img]

2019 AMC 12/AHSME, 24

Let $\omega=-\tfrac{1}{2}+\tfrac{1}{2}i\sqrt3.$ Let $S$ denote all points in the complex plane of the form $a+b\omega+c\omega^2,$ where $0\leq a \leq 1,0\leq b\leq 1,$ and $0\leq c\leq 1.$ What is the area of $S$? $\textbf{(A) } \frac{1}{2}\sqrt3 \qquad\textbf{(B) } \frac{3}{4}\sqrt3 \qquad\textbf{(C) } \frac{3}{2}\sqrt3\qquad\textbf{(D) } \frac{1}{2}\pi\sqrt3 \qquad\textbf{(E) } \pi$

2013 Hanoi Open Mathematics Competitions, 6

Let $ABC$ be a triangle with area $1$ (cm$^2$). Points $D,E$ and $F$ lie on the sides $AB, BC$ and CA, respectively. Prove that $min\{$area of $\vartriangle ADF,$ area of $\vartriangle BED,$ area of $\vartriangle CEF\} \le \frac14$ (cm$^2$).

2016 India PRMO, 5

Tags: geometry , area
Consider a triangle $ABC$ with $AB = 13, BC = 14, CA = 15$. A line perpendicular to $BC$ divides the interior of $\vartriangle BC$ into two regions of equal area. Suppose that the aforesaid perpendicular cuts $BC$ at $D$, and cuts $\vartriangle ABC$ again at $E$. If $L$ is the length of the line segment $DE$, find $L^2$.

1966 IMO Longlists, 63

Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points in the interiors of the sides $ BC$, $ CA$, $ AB$ of this triangle. Prove that the area of at least one of the three triangles $ AQR$, $ BRP$, $ CPQ$ is less than or equal to one quarter of the area of triangle $ ABC$. [i]Alternative formulation:[/i] Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Prove that $ \min\left\{\left|AQR\right|,\left|BRP\right|,\left|CPQ\right|\right\}\leq\frac14\cdot\left|ABC\right|$, where the abbreviation $ \left|P_1P_2P_3\right|$ denotes the (non-directed) area of an arbitrary triangle $ P_1P_2P_3$.

2004 Switzerland Team Selection Test, 10

In an acute-angled triangle $ABC$ the altitudes $AU,BV,CW$ intersect at $H$. Points $X,Y,Z$, different from $H$, are taken on segments $AU,BV$, and $CW$, respectively. (a) Prove that if $X,Y,Z$ and $H$ lie on a circle, then the sum of the areas of triangles $ABZ, AYC, XBC$ equals the area of $ABC$. (b) Prove the converse of (a).

2019 Durer Math Competition Finals, 7

We choose a point on each side of a parallelogram $ABCD$, let these four points be $P, Q, R$ and $S$. Then we divide the parallelogram into several regions using line segments as shown in the figure. The areas of the grey regions are given, except for one (see the figure). Find the area of the region marked with a question mark. [img]https://cdn.artofproblemsolving.com/attachments/4/7/dbd009042dabdb2eafc8fc74960e9011038dae.png[/img]

2014 BMT Spring, 2

Suppose $ \vartriangle ABC$ is similar to $\vartriangle DEF$, with $ A$, $ B$, and $C$ corresponding to $D, E$, and $F$ respectively. If $\overline{AB} = \overline{EF}$, $\overline{BC} = \overline{FD}$, and $\overline{CA} = \overline{DE} = 2$, determine the area of $ \vartriangle ABC$.

1972 All Soviet Union Mathematical Olympiad, 164

Given several squares with the total area $1$. Prove that you can pose them in the square of the area $2$ without any intersections.

1987 Tournament Of Towns, (157) 1

From vertex $A$ in square $ABCD$ (of side length $1$ ) two lines are drawn , one intersecting side $BC$ and the other intersecting side $CD$. The angle between these lines is $\theta$. From vertices $B$ and $D$ we construct perpendiculars to each of these lines . Find the area of the quadrilateral whose vertices are the four feet of these perpendiculars.

Geometry Mathley 2011-12, 2.1

Let $ABC$ be an equilateral triangle with circumcircle of center $O$ and radius $R$. Point $M$ is exterior to the triangle such that $S_bS_c = S_aS_b+S_aS_c$, where $S_a, S_b, S_c$ are the areas of triangles $MBC,MCA,MAB$ respectively. Prove that $OM \ge R$. Nguyễn Tiến Lâm

1993 IMO, 2

Let $A$, $B$, $C$, $D$ be four points in the plane, with $C$ and $D$ on the same side of the line $AB$, such that $AC \cdot BD = AD \cdot BC$ and $\angle ADB = 90^{\circ}+\angle ACB$. Find the ratio \[\frac{AB \cdot CD}{AC \cdot BD}, \] and prove that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicuar. Thus, proving that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal is equivalent to proving that the tangents to the circumcircles of the triangles $ACD$ and $BCD$ at the point $C$ are perpendicular.)

2017 Saudi Arabia JBMO TST, 3

Let $BC$ be a chord of a circle $(O)$ such that $BC$ is not a diameter. Let $AE$ be the diameter perpendicular to $BC$ such that $A$ belongs to the larger arc $BC$ of $(O)$. Let $D$ be a point on the larger arc $BC$ of $(O)$ which is different from $A$. Suppose that $AD$ intersects $BC$ at $S$ and $DE$ intersects $BC$ at $T$. Let $F$ be the midpoint of $ST$ and $I$ be the second intersection point of the circle $(ODF)$ with the line $BC$. 1. Let the line passing through $I$ and parallel to $OD$ intersect $AD$ and $DE$ at $M$ and $N$, respectively. Find the maximum value of the area of the triangle $MDN$ when $D$ moves on the larger arc $BC$ of $(O)$ (such that $D \ne A$). 2. Prove that the perpendicular from $D$ to $ST$ passes through the midpoint of $MN$

1997 May Olympiad, 5

Tags: geometry , hexagon , area
What are the possible areas of a hexagon with all angles equal and sides $1, 2, 3, 4, 5$, and $6$, in some order?

May Olympiad L1 - geometry, 2011.3

In the rectangle $ABCD, BC = 5, EC = 1/3 CD$ and $F$ is the point where $AE$ and $BD$ are cut. The triangle $DFE$ has area $12$ and the triangle $ABF$ has area $27$. Find the area of the quadrilateral $BCEF$ . [img]https://1.bp.blogspot.com/-4w6e729AF9o/XNY9hqHaBaI/AAAAAAAAKL0/eCaNnWmgc7Yj9uV4z29JAvTcWCe21NIMgCK4BGAYYCw/s400/may%2B2011%2Bl1.png[/img]

2019 Portugal MO, 1

Tags: geometry , square , area
In a square of side $10$ cm , the vertices are joined to the midpoints on the opposite sides, as shown in the figure. How much does the area of the colored region measure? [img]https://1.bp.blogspot.com/-bHrc1Nu0PQI/X4KaJysLAcI/AAAAAAAAMk0/LLGv1fotQO0Tk1AXqQymG_nNdpyWcbjyACLcBGAsYHQ/s109/2019%2BPortugal%2Bp1.png[/img]

2016 May Olympiad, 5

Rosa and Sara play with a triangle $ABC$, right at $B$. Rosa begins by marking two interior points of the hypotenuse $AC$, then Sara marks an interior point of the hypotenuse $AC$ different from those of Rosa. Then, from these three points the perpendiculars to the sides $AB$ and $BC$ are drawn, forming the following figure. [img]https://cdn.artofproblemsolving.com/attachments/9/9/c964bbacc4a5960bee170865cc43902410e504.png[/img] Sara wins if the area of the shaded surface is equal to the area of the unshaded surface, in other case wins Rosa. Determine who of the two has a winning strategy.

May Olympiad L2 - geometry, 2016.4

Tags: midline , geometry , area
In a triangle $ABC$, let $D$ and $E$ be points of the sides $ BC$ and $AC$ respectively. Segments $AD$ and $BE$ intersect at $O$. Suppose that the line connecting midpoints of the triangle and parallel to $AB$, bisects the segment $DE$. Prove that the triangle $ABO$ and the quadrilateral $ODCE$ have equal areas.

1981 Tournament Of Towns, (009) 3

$ABCD$ is a convex quadrilateral inscribed in a circle with centre $O$, and with mutually perpendicular diagonals. Prove that the broken line $AOC$ divides the quadrilateral into two parts of equal area. (V Varvarkin)

2003 Estonia National Olympiad, 1

The picture shows $10$ equal regular pentagons where each two neighbouring pentagons have a common side. The smaller circle is tangent to one side of each pentagon and the larger circle passes through the opposite vertices of these sides. Find the area of the larger circle if the area of the smaller circle is $1$. [img]https://cdn.artofproblemsolving.com/attachments/0/6/84fe98370868a5cf28d92d4b207ccb00e6eaa3.png[/img]

1999 Tournament Of Towns, 1

A right-angled triangle made of paper is folded along a straight line so that the vertex at the right angle coincides with one of the other vertices of the triangle and a quadrilateral is obtained . (a) What is the ratio into which the diagonals of this quadrilateral divide each other? (b) This quadrilateral is cut along its longest diagonal. Find the area of the smallest piece of paper thus obtained if the area of the original triangle is $1$ . (A Shapovalov)

2006 May Olympiad, 4

Tags: trapezoid , area , geometry
Let $ABCD$ be a trapezoid of bases $AB$ and $CD$ . Let $O$ be the intersection point of the diagonals $AC$ and $BD$. If the area of the triangle $ABC$ is $150$ and the area of the triangle $ACD$ is $120$, calculate the area of the triangle $BCO$.

1989 IMO Shortlist, 18

Given a convex polygon $ A_1A_2 \ldots A_n$ with area $ S$ and a point $ M$ in the same plane, determine the area of polygon $ M_1M_2 \ldots M_n,$ where $ M_i$ is the image of $ M$ under rotation $ R^{\alpha}_{A_i}$ around $ A_i$ by $ \alpha_i, i \equal{} 1, 2, \ldots, n.$

2017 Denmark MO - Mohr Contest, 3

Tags: arc , geometry , area
The figure shows an arc $\ell$ on the unit circle and two regions $A$ and $B$. Prove that the area of $A$ plus the area of $B$ equals the length of $\ell$. [img]https://1.bp.blogspot.com/-SYoSrFowZ30/XzRz0ygiOVI/AAAAAAAAMUs/0FCduUoxKGwq0gSR-b3dtb3SvDjZ89x_ACLcBGAsYHQ/s0/2017%2BMohr%2Bp3.png[/img]