This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

1997 Denmark MO - Mohr Contest, 2

Tags: area , square , geometry
Two squares, both with side length $1$, are arranged so that one has one vertex in the center of the other. Determine the area of the gray area. [img]https://1.bp.blogspot.com/-xt3pe0rp1SI/XzcGLgEw1EI/AAAAAAAAMYM/vFKxvvVuLvAJ5FO_yX315X3Fg_iFaK2fACLcBGAsYHQ/s0/1997%2BMohr%2Bp2.png[/img]

2013 Dutch BxMO/EGMO TST, 1

In quadrilateral $ABCD$ the sides $AB$ and $CD$ are parallel. Let $M$ be the midpoint of diagonal $AC$. Suppose that triangles $ABM$ and $ACD$ have equal area. Prove that $DM // BC$.

1997 Tournament Of Towns, (532) 4

Tags: angle , geometry , hexagon , area
$AC' BA'C B'$ is a convex hexagon such that $AB' = AC'$, $BC' = BA'$, $CA' = CB'$ and $\angle A +\angle B + \angle C = \angle A' + \angle B' + \angle C'$. Prove that the area of the triangle $ABC$ is half the area of the hexagon. (V Proizvolov)

1992 Tournament Of Towns, (334) 2

Let $a$ and $S$ be the length of the side and the area of regular triangle inscribed in a circle of radius $1$. A closed broken line $A_1A_2...A_{51}A_1$ consisting of $51$ segments of the same length $a$ is placed inside the circle. Prove that the sum of areas of the $ 51$ triangles between the neighboring segments $$A_1A_2A_3, A_2A_3A_4,..., A_{49}A_{50}A_{51}, A_{50}A_{51}A_1, A_{51}A_1A_2$$ is not less than $3S$. (A. Berzinsh, Riga)

Novosibirsk Oral Geo Oly VII, 2022.5

Tags: rectangle , area , geometry
Two equal rectangles of area $10$ are arranged as follows. Find the area of the gray rectangle. [img]https://cdn.artofproblemsolving.com/attachments/7/1/112b07530a2ef42e5b2cf83a2cb9fb11dfc9e6.png[/img]

1999 Abels Math Contest (Norwegian MO), 3

An isosceles triangle $ABC$ with $AB = AC$ and $\angle A = 30^o$ is inscribed in a circle with center $O$. Point $D$ lies on the shorter arc $AC$ so that $\angle DOC = 30^o$, and point $G$ lies on the shorter arc $AB$ so that $DG = AC$ and $AG < BG$. The line $BG$ intersects $AC$ and $AB$ at $E$ and $F$, respectively. (a) Prove that triangle $AFG$ is equilateral. (b) Find the ratio between the areas of triangles $AFE$ and $ABC$.

2021 Durer Math Competition Finals, 10

Tags: geometry , area
A triangle is given. Its side a is of length $20$ cm, and its area is $125$ cm$^2$. It is also known that one of the angles lying on side a is twice as large as the other one. We cut the triangle into two parts at the median belonging to side a. Then we move the so-obtained two parts towards each other, such that the two segments of side a remain on the same line (i.e., the line initially occupied by side a). We move the two parts towards each other until we first reach a moment when the common part of the two segments is of length $4$ cm. What is the area of the so-obtained shape in cm$^2$? The so-obtained shape is the union of the two parts, which is a heptagon. [img]https://cdn.artofproblemsolving.com/attachments/3/0/3d45e2df6a0043dfa4fe5ccf64865da8879b42.png[/img]

2009 Postal Coaching, 4

Tags: area , square , geometry
Determine the least real number $a > 1$ such that for any point $P$ in the interior of a square $ABCD$, the ratio of the areas of some two triangle $PAB, PBC, PCD, PDA$ lies in the interval $[1/a, a]$.

2001 Paraguay Mathematical Olympiad, 4

In a parallelogram $ABCD$ of surface area $60$ cm$^2$ , a line is drawn by $D$ that intersects $BC$ at $P$ and the extension of $AB$ at $Q$. If the area of the quadrilateral $ABPD$ is $46$ cm$^2$ , find the area of triangle $CPQ$.

1962 All Russian Mathematical Olympiad, 023

What maximal area can have a triangle if its sides $a,b,c$ satisfy inequality $0\le a\le 1\le b\le 2\le c\le 3$ ?

1997 ITAMO, 1

An infinite rectangular stripe of width $3$ cm is folded along a line. What is the minimum possible area of the region of overlapping?

Durer Math Competition CD 1st Round - geometry, 2019.C3

Tags: area , geometry
The best parts of grandma’s $30$ cm $ \times 30$ cm square shaped pie are the edges. For this reason grandma’s three grandchildren would like to split the pie between each other so that everyone gets the same amount (of the area) of the pie, but also of the edges. Can they cut the pie into three connected pieces like that?

2000 Denmark MO - Mohr Contest, 1

Tags: area , midpoint , square
The quadrilateral $ABCD$ is a square of sidelength $1$, and the points $E, F, G, H$ are the midpoints of the sides. Determine the area of quadrilateral $PQRS$. [img]https://1.bp.blogspot.com/--fMGH2lX6Go/XzcDqhgGKfI/AAAAAAAAMXo/x4NATcMDJ2MeUe-O0xBGKZ_B4l_QzROjACLcBGAsYHQ/s0/2000%2BMohr%2Bp1.png[/img]

2023 May Olympiad, 3

Tags: geometry , area
On a straight line $\ell$ there are four points, $A$, $B$, $C$ and $D$ in that order, such that $AB=BC=CD$. A point $E$ is chosen outside the straight line so that when drawing the segments $EB$ and $EC$, an equilateral triangle $EBC$ is formed . Segments $EA$ and $ED$ are drawn, and a point $F$ is chosen so that when drawing the segments $FA$ and $FE$, an equilateral triangle $FAE$ is formed outside the triangle $EAD$. Finally, the lines $EB$ and $FA$ are drawn , which intersect at the point $G$. If the area of triangle $EBD$ is $10$, calculate the area of triangle $EFG$.

Estonia Open Senior - geometry, 1996.1.4

A unit square has a circle of radius $r$ with center at it's midpoint. The four quarter circles are centered on the vertices of the square and are tangent to the central circle (see figure). Find the maximum and minimum possible value of the area of the striped figure in the figure and the corresponding values of $r$ such these, the maximum and minimum are achieved. [img]https://2.bp.blogspot.com/-DOT4_B5Mx-8/XnmsTlWYfyI/AAAAAAAALgs/TVYkrhqHYGAeG8eFuqFxGDCTnogVbQFUwCK4BGAYYCw/s400/96%2Bestonia%2Bopen%2Bs1.4.png[/img]

May Olympiad L1 - geometry, 2003.2

The triangle $ABC$ is right in $A$ and $R$ is the midpoint of the hypotenuse $BC$ . On the major leg $AB$ the point $P$ is marked such that $CP = BP$ and on the segment $BP$ the point $Q$ is marked such that the triangle $PQR$ is equilateral. If the area of triangle $ABC$ is $27$, calculate the area of triangle $PQR$ .

2023 OMpD, 2

Let $ABCDE$ be a convex pentagon inscribed in a circle $\Gamma$, such that $AB = BC = CD$. Let $F$ and $G$ be the intersections of $BE$ with $AC$ and of $CE$ with $BD$, respectively. Show that: a) $[ABC] = [FBCG]$ b) $\frac{[EFG]}{[EAD]} = \frac{BC}{AD}$ [b]Note: [/b] $[X]$ denotes the area of polygon $X$.

May Olympiad L2 - geometry, 2003.4

Bob plotted $2003$ green points on the plane, so all triangles with three green vertices have area less than $1$. Prove that the $2003$ green points are contained in a triangle $T$ of area less than $4$.

2016 BMT Spring, 5

Let $ABC$ be a right triangle with $AB = BC = 2$. Let $ACD$ be a right triangle with angle $\angle DAC = 30$ degrees and $\angle DCA = 60$ degrees. Given that $ABC$ and $ACD$ do not overlap, what is the area of triangle $BCD$?

2005 Cuba MO, 8

Find the smallest real number $A$, such that there are two different triangles, with integer sidelengths and so that the area of each be $A$.

2006 Junior Balkan Team Selection Tests - Romania, 2

In a plane $5$ points are given such that all triangles having vertices at these points are of area not greater than $1$. Show that there exists a trapezoid which contains all point in the interior (or on the sides) and having the area not exceeding $3$.

Ukrainian TYM Qualifying - geometry, IV.8

Prove that in an arbitrary convex hexagon there is a diagonal that cuts off from it a triangle whose area does not exceed $\frac16$ of the area of the hexagon. What are the properties of a convex hexagon, each diagonal of which is cut off from it is a triangle whose area is not less than $\frac16$ the area of the hexagon?

1955 Poland - Second Round, 5

Given a triangle $ ABC $. Find the rectangle of smallest area containing the triangle.

2020 Yasinsky Geometry Olympiad, 1

The square $ABCD$ is divided into $8$ equal right triangles and the square $KLMN$, as shown in the figure. Find the area of the square $ABCD$ if $KL = 5, PS = 8$. [img]https://1.bp.blogspot.com/-B2QIHvPcIx0/X4BhUTMDhSI/AAAAAAAAMj4/4h0_q1P6drskc5zSvtfTZUskarJjRp5LgCLcBGAsYHQ/s0/Yasinsky%2B2020%2Bp1.png[/img]

LMT Team Rounds 2010-20, 2013 Hexagon

Tags: geometry , hexagon , area
Let $ABC$ be a triangle and $O$ be its circumcircle. Let $A', B', C'$ be the midpoints of minor arcs $AB$, $BC$ and $CA$ respectively. Let $I$ be the center of incircle of $ABC$. If $AB = 13$, $BC = 14$ and $AC = 15$, what is the area of the hexagon $AA'BB'CC'$? Suppose $m \angle BAC = \alpha$ , $m \angle CBA = \beta$, and $m \angle ACB = \gamma$. [b]p10.[/b] Let the incircle of $ABC$ be tangent to $AB, BC$, and $AC$ at $J, K, L$, respectively. Compute the angles of triangles $JKL$ and $A'B'C'$ in terms of $\alpha$, $\beta$, and $\gamma$, and conclude that these two triangles are similar. [b]p11.[/b] Show that triangle $AA'C'$ is congruent to triangle $IA'C'$. Show that $AA'BB'CC'$ has twice the area of $A'B'C'$. [b]p12.[/b] Let $r = JL/A'C'$ and the area of triangle $JKL$ be $S$. Using the previous parts, determine the area of hexagon $AA'BB'CC'$ in terms of $ r$ and $S$. [b]p13.[/b] Given that the circumradius of triangle $ABC$ is $65/8$ and that $S = 1344/65$, compute $ r$ and the exact value of the area of hexagon $AA'BB'CC'$. PS. You had better use hide for answers.