Found problems: 3882
2014 Vietnam Team Selection Test, 3
Let $ABC$ be triangle with $A<B<C$ and inscribed in a circle $(O)$. On the minor arc $ABC$ of $(O)$ and does not contain point $A$, choose an arbitrary point $D$. Suppose $CD$ meets $AB$ at $E$ and $BD$ meets $AC$ at $F$. Let $O_1$ be the incenter of triangle $EBD$ touches with $EB,ED$ and tangent to $(O)$. Let $O_2$ be the incenter of triangle $FCD$, touches with $FC,FD$ and tangent to $(O)$.
a) $M$ is a tangency point of $O_1$ with $BE$ and $N$ is a tangency point of $O_2$ with $CF$. Prove that the circle with diameter $MN$ has a fixed point.
b) A line through $M$ is parallel to $CE$ meets $AC$ at $P$, a line through $N$ is parallel to $BF$ meets $AB$ at $Q$. Prove that the circumcircles of triangles $(AMP),(ANQ)$ are all tangent to a fixed circle.
2018 Dutch BxMO TST, 4
In a non-isosceles triangle $\vartriangle ABC$ we have $\angle BAC = 60^o$. Let $D$ be the intersection of the angular bisector of $\angle BAC$ with side $BC, O$ the centre of the circumcircle of $\vartriangle ABC$ and $E$ the intersection of $AO$ and $BC$. Prove that $\angle AED + \angle ADO = 90^o$.
2020 Iranian Geometry Olympiad, 5
Consider an acute-angled triangle $\triangle ABC$ ($AC>AB$) with its orthocenter $H$ and circumcircle $\Gamma$.Points $M$,$P$ are midpoints of $BC$ and $AH$ respectively.The line $\overline{AM}$ meets $\Gamma$ again at $X$ and point $N$ lies on the line $\overline{BC}$ so that $\overline{NX}$ is tangent to $\Gamma$.
Points $J$ and $K$ lie on the circle with diameter $MP$ such that $\angle AJP=\angle HNM$ ($B$ and $J$ lie one the same side of $\overline{AH}$) and circle $\omega_1$, passing through $K,H$, and $J$, and circle $\omega_2$ passing through $K,M$, and $N$, are externally tangent to each other. Prove that the common external tangents of $\omega_1$ and $\omega_2$ meet on the line $\overline{NH}$.
[i]Proposed by Alireza Dadgarnia[/i]
2018 Harvard-MIT Mathematics Tournament, 8
Equilateral triangle $ABC$ has circumcircle $\Omega$. Points $D$ and $E$ are chosen on minor arcs $AB$ and $AC$ of $\Omega$ respectively such that $BC=DE$. Given that triangle $ABE$ has area $3$ and triangle $ACD$ has area $4$, find the area of triangle $ABC$.
2018 Rioplatense Mathematical Olympiad, Level 3, 4
Let $ABC$ be an acute triangle with $AC> AB$. be $\Gamma$ the circumcircle circumscribed to the triangle $ABC$ and $D$ the midpoint of the smallest arc $BC$ of this circle. Let $E$ and $F$ points of the segments $AB$ and $AC$ respectively such that $AE = AF$. Let $P \neq A$ be the second intersection point of the circumcircle circumscribed to $AEF$ with $\Gamma$. Let $G$ and $H$ be the intersections of lines $PE$ and $PF$ with $\Gamma$ other than $P$, respectively. Let $J$ and $K$ be the intersection points of lines $DG$ and $DH$ with lines $AB$ and $AC$ respectively. Show that the $JK$ line passes through the midpoint of $BC$
2010 Germany Team Selection Test, 3
Let $ABCD$ be a circumscribed quadrilateral. Let $g$ be a line through $A$ which meets the segment $BC$ in $M$ and the line $CD$ in $N$. Denote by $I_1$, $I_2$ and $I_3$ the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on $g$.
[i]Proposed by Nikolay Beluhov, Bulgaria[/i]
2001 Junior Balkan Team Selection Tests - Romania, 2
Let $ABCDEF$ be a hexagon with $AB||DE,\ BC||EF,\ CD||FA$ and in which the diagonals $AD,BE$ and $CF$ are congruent. Prove that the hexagon can be inscribed in a circle.
1998 APMO, 4
Let $ABC$ be a triangle and $D$ the foot of the altitude from $A$. Let $E$ and $F$ lie on a line passing through $D$ such that $AE$ is perpendicular to $BE$, $AF$ is perpendicular to $CF$, and $E$ and $F$ are different from $D$. Let $M$ and $N$ be the midpoints of the segments $BC$ and $EF$, respectively. Prove that $AN$ is perpendicular to $NM$.
2011 Brazil Team Selection Test, 4
Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$
[i]Proposed by Nazar Serdyuk, Ukraine[/i]
2012 Dutch IMO TST, 5
Let $\Gamma$ be the circumcircle of the acute triangle $ABC$. The angle bisector of angle $ABC$ intersects $AC$ in the point $B_1$ and the short arc $AC$ of $\Gamma$ in the point $P$. The line through $B_1$ perpendicular to $BC$ intersects the short arc $BC$ of $\Gamma$ in $K$. The line through $B$ perpendicular to $AK$ intersects $AC$ in $L$. Prove that $K, L$ and $P$ lie on a line.
Kharkiv City MO Seniors - geometry, 2017.11.5
The quadrilateral $ABCD$ is inscribed in the circle $\omega$. Lines $AD$ and $BC$ intersect at point $E$. Points $M$ and $N$ are selected on segments $AD$ and $BC$, respectively, so that $AM: MD = BN: NC$. The circumscribed circle of the triangle $EMN$ intersects the circle $\omega$ at points $X$ and $Y$. Prove that the lines $AB, CD$ and $XY$ intersect at the same point or are parallel.
2005 Taiwan TST Round 3, 2
Given a triangle $ABC$, we construct a circle $\Gamma$ through $B,C$ with center $O$. $\Gamma$ intersects $AC, AB$ at points $D$, $E$, respectively($D$, $E$ are distinct from $B$ and $C$). Let the intersection of $BD$ and $CE$ be $F$. Extend $OF$ so that it intersects the circumcircle of $\triangle ABC$ at $P$. Show that the incenters of triangles $PBD$ and $PCE$ coincide.
2010 China Team Selection Test, 1
Let $\triangle ABC$ be an acute triangle, and let $D$ be the projection of $A$ on $BC$. Let $M,N$ be the midpoints of $AB$ and $AC$ respectively. Let $\Gamma_1$ and $\Gamma_2$ be the circumcircles of $\triangle BDM$ and $\triangle CDN$ respectively, and let $K$ be the other intersection point of $\Gamma_1$ and $\Gamma_2$. Let $P$ be an arbitrary point on $BC$ and $E,F$ are on $AC$ and $AB$ respectively such that $PEAF$ is a parallelogram. Prove that if $MN$ is a common tangent line of $\Gamma_1$ and $\Gamma_2$, then $K,E,A,F$ are concyclic.
2015 Indonesia MO Shortlist, G7
Given an acute triangle $ABC$. $\Gamma _{B}$ is a circle that passes through $AB$, tangent to $AC$ at $A$ and centered at $O_{B}$. Define $\Gamma_C$ and $O_C$ the same way. Let the altitudes of $\triangle ABC$ from $B$ and $C$ meets the circumcircle of $\triangle ABC$ at $X$ and $Y$, respectively. Prove that $A$, the midpoint of $XY$ and the midpoint of $O_{B}O_{C}$ is collinear.
2017 OMMock - Mexico National Olympiad Mock Exam, 1
Let $ABC$ be a triangle with circumcenter $O$. Point $D, E, F$ are chosen on sides $AB, BC$ and $AC$, respectively, such that $ADEF$ is a rhombus. The circumcircles of $BDE$ and $CFE$ intersect $AE$ at $P$ and $Q$ respectively. Show that $OP=OQ$.
[i]Proposed by Ariel García[/i]
2005 Iran MO (3rd Round), 5
Suppose $H$ and $O$ are orthocenter and circumcenter of triangle $ABC$. $\omega$ is circumcircle of $ABC$. $AO$ intersects with $\omega$ at $A_1$. $A_1H$ intersects with $\omega$ at $A'$ and $A''$ is the intersection point of $\omega$ and $AH$. We define points $B',\ B'',\ C'$ and $C''$ similiarly. Prove that $A'A'',B'B''$ and $C'C''$ are concurrent in a point on the Euler line of triangle $ABC$.
2003 Balkan MO, 2
Let $ABC$ be a triangle, and let the tangent to the circumcircle of the triangle $ABC$ at $A$ meet the line $BC$ at $D$. The perpendicular to $BC$ at $B$ meets the perpendicular bisector of $AB$ at $E$. The perpendicular to $BC$ at $C$ meets the perpendicular bisector of $AC$ at $F$. Prove that the points $D$, $E$ and $F$ are collinear.
[i]Valentin Vornicu[/i]
2002 France Team Selection Test, 1
In an acute-angled triangle $ABC$, $A_1$ and $B_1$ are the feet of the altitudes from $A$ and $B$ respectively, and $M$ is the midpoint of $AB$.
a) Prove that $MA_1$ is tangent to the circumcircle of triangle $A_1B_1C$.
b) Prove that the circumcircles of triangles $A_1B_1C,BMA_1$, and $AMB_1$ have a common point.
2005 IMO Shortlist, 7
In an acute triangle $ABC$, let $D$, $E$, $F$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $BC$, $CA$, $AB$, respectively, and let $P$, $Q$, $R$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $EF$, $FD$, $DE$, respectively.
Prove that $p\left(ABC\right)p\left(PQR\right) \ge \left(p\left(DEF\right)\right)^{2}$, where $p\left(T\right)$ denotes the perimeter of triangle $T$ .
[i]Proposed by Hojoo Lee, Korea[/i]
1987 Tournament Of Towns, (139) 4
Angle $A$ of the acute-angled triangle $ABC$ equals $60^o$ . Prove that the bisector of one of the angles formed by the altitudes drawn from $B$ and $C$, passes through the circumcircle 's centre.
(V . Pogrebnyak , year 12 student , Vinnitsa,)
2002 JBMO ShortLists, 9
In triangle $ ABC,H,I,O$ are orthocenter, incenter and circumcenter, respectively. $ CI$ cuts circumcircle at $ L$. If $ AB\equal{}IL$ and $ AH\equal{}OH$, find angles of triangle $ ABC$.
2010 Sharygin Geometry Olympiad, 19
A quadrilateral $ABCD$ is inscribed into a circle with center $O.$ Points $P$ and $Q$ are opposite to $C$ and $D$ respectively. Two tangents drawn to that circle at these points meet the line $AB$ in points $E$ and $F.$ ($A$ is between $E$ and $B$, $B$ is between $A$ and $F$). The line $EO$ meets $AC$ and $BC$ in points $X$ and $Y$ respectively, and the line $FO$ meets $AD$ and $BD$ in points $U$ and $V$ respectively. Prove that $XV=YU.$
2013 India IMO Training Camp, 2
In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.
2019 Iran Team Selection Test, 3
In triangle $ABC$, $M,N$ and $P$ are midpoints of sides $BC,CA$ and $AB$. Point $K$ lies on segment $NP$ so that $AK$ bisects $\angle BKC$. Lines $MN,BK$ intersects at $E$ and lines $MP,CK$ intersects at $F$. Suppose that $H$ be the foot of perpendicular line from $A$ to $BC$ and $L$ the second intersection of circumcircle of triangles $AKH, HEF$. Prove that $MK,EF$ and $HL$ are concurrent.
[i]Proposed by Alireza Dadgarnia[/i]
2014 National Olympiad First Round, 21
Let $ABCD$ be a trapezoid such that side $[AB]$ and side $[CD]$ are perpendicular to side $[BC]$. Let $E$ be a point on side $[BC]$ such that $\triangle AED$ is equilateral. If $|AB|=7$ and $|CD|=5$, what is the area of trapezoid $ABCD$?
$
\textbf{(A)}\ 27\sqrt{3}
\qquad\textbf{(B)}\ 42
\qquad\textbf{(C)}\ 24\sqrt{3}
\qquad\textbf{(D)}\ 40
\qquad\textbf{(E)}\ 36
$