This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

VI Soros Olympiad 1999 - 2000 (Russia), 9.8

Given a line $\ell$ and a ray $p$ on a plane with its origin on this line. Two fixed circles (not necessarily equal) are constructed, inscribed in the two formed angles. On ray $p$, point $A$ is taken so that the tangents from $A$ to the given circles, different from $p$, intersect line $\ell$ at points $B$ and $C$, and at the same time triangle $ABC$ contains the given circles. Find the locus of the centers of the circles inscribed in triangle $ABC$ (as $A$ moves).

2025 Turkey Team Selection Test, 6

Let $ABC$ be a scalene triangle with incenter $I$ and incircle $\omega$. Let the tangency points of $\omega$ to $BC,AC\text{ and } AB$ be $D,E,F$ respectively. Let the line $EF$ intersect the circumcircle of $ABC$ at the points $G, H$. Assume that $E$ lies between the points $F$ and $G$. Let $\Gamma$ be a circle that passes through $G$ and $H$ and that is tangent to $\omega$ at the point $M$ which lies on different semi-planes with $D$ with respect to the line $EF$. Let $\Gamma$ intersect $BC$ at points $K$ and $L$ and let the second intersection point of the circumcircle of $ABC$ and the circumcircle of $AKL$ be $N$. Prove that the intersection point of $NM$ and $AI$ lies on the circumcircle of $ABC$ if and only if the intersection point of $HB$ and $GC$ lies on $\Gamma$.

2020 Ecuador NMO (OMEC), 3

Let $ABC$ a triangle with circumcircle $\Gamma$ and circumcenter $O$. A point $X$, different from $A$, $B$, $C$, or their diametrically opposite points, on $\Gamma$, is chosen. Let $\omega$ the circumcircle of $COX$. Let $E$ the second intersection of $XA$ with $\omega$, $F$ the second intersection of $XB$ with $\omega$ and $D$ a point on line $AB$ such that $CD \perp EF$. Prove that $E$ is the circumcenter of $ADC$ and $F$ is the circumcenter of $BDC$.

2015 Brazil National Olympiad, 1

Let $\triangle ABC$ be an acute-scalene triangle, and let $N$ be the center of the circle wich pass trough the feet of altitudes. Let $D$ be the intersection of tangents to the circumcircle of $\triangle ABC$ at $B$ and $C$. Prove that $A$, $D$ and $N$ are collinear iff $\measuredangle BAC = 45º$.

2006 Costa Rica - Final Round, 3

Given a triangle $ABC$ satisfying $AC+BC=3\cdot AB$. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$ and $CA$ at the points $D$ and $E$, respectively. Let $K$ and $L$ be the reflections of the points $D$ and $E$ with respect to $I$. Prove that the points $A$, $B$, $K$, $L$ lie on one circle. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

Taiwan TST 2015 Round 1, 1

Let $ABC$ be a triangle and $M$ be the midpoint of $BC$, and let $AM$ meet the circumcircle of $ABC$ again at $R$. A line passing through $R$ and parallel to $BC$ meet the circumcircle of $ABC$ again at $S$. Let $U$ be the foot from $R$ to $BC$, and $T$ be the reflection of $U$ in $R$. $D$ lies in $BC$ such that $AD$ is an altitude. $N$ is the midpoint of $AD$. Finally let $AS$ and $MN$ meets at $K$. Prove that $AT$ bisector $MK$.

2009 USA Team Selection Test, 2

Let $ ABC$ be an acute triangle. Point $ D$ lies on side $ BC$. Let $ O_B, O_C$ be the circumcenters of triangles $ ABD$ and $ ACD$, respectively. Suppose that the points $ B, C, O_B, O_C$ lies on a circle centered at $ X$. Let $ H$ be the orthocenter of triangle $ ABC$. Prove that $ \angle{DAX} \equal{} \angle{DAH}$. [i]Zuming Feng.[/i]

2019 Cono Sur Olympiad, 6

Let $ABC$ be an acute-angled triangle with $AB< AC$, and let $H$ be its orthocenter. The circumference with diameter $AH$ meets the circumscribed circumference of $ABC$ at $P\neq A$. The tangent to the circumscribed circumference of $ABC$ through $P$ intersects line $BC$ at $Q$. Show that $QP=QH$.

1988 Brazil National Olympiad, 4

Two triangles are circumscribed to a circumference. Show that if a circumference containing five of their vertices exists, then it will contain the sixth vertex too.

1995 Turkey Team Selection Test, 3

Let $D$ be a point on the small arc $AC$ of the circumcircle of an equilateral triangle $ABC$, different from $A$ and $C$. Let $E$ and $F$ be the projections of $D$ onto $BC$ and $AC$ respectively. Find the locus of the intersection point of $EF$ and $OD$, where $O$ is the center of $ABC$.

2014 ELMO Shortlist, 11

Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be a point inside $ABC$, so let the points $D, E, F$ be on $BC, AC, AB$ respectively so that the Miquel point of $DEF$ with respect to $ABC$ is $P$. Let the reflections of $D, E, F$ over the midpoints of the sides that they lie on be $R, S, T$. Let the Miquel point of $RST$ with respect to the triangle $ABC$ be $Q$. Show that $OP = OQ$. [i]Proposed by Yang Liu[/i]

2019 IMAR Test, 1

Consider an acute triangle $ ABC. $ The points $ D,E,F $ are the feet of the altitudes of $ ABC $ from $ A,B,C, $ respectively. $ M,N,P $ are the middlepoints of $ BC,CA,AB, $ respectively. The circumcircles of $ BDP,CDN $ cross at $ X\neq D, $ the circumcircles of $ CEM,AEP $ cross at $ Y\neq E, $ and the circumcircles of $ AFN,BFM $ cross at $ Z\neq F. $ Prove that $ AX,BY,CZ $ are concurrent.

2011 All-Russian Olympiad, 3

Let $ABC$ be an equilateral triangle. A point $T$ is chosen on $AC$ and on arcs $AB$ and $BC$ of the circumcircle of $ABC$, $M$ and $N$ are chosen respectively, so that $MT$ is parallel to $BC$ and $NT$ is parallel to $AB$. Segments $AN$ and $MT$ intersect at point $X$, while $CM$ and $NT$ intersect in point $Y$. Prove that the perimeters of the polygons $AXYC$ and $XMBNY$ are the same.

2012 AMC 10, 23

A solid tetrahedron is sliced off a solid wooden unit cube by a plane passing through two nonadjacent vertices on one face and one vertex on the opposite face not adjacent to either of the first two vertices. The tetrahedron is discarded and the remaining portion of the cube is placed on a table with the cut surface face down. What is the height of this object? $ \textbf{(A)}\ \dfrac{\sqrt{3}}{3}\qquad\textbf{(B)}\ \dfrac{2\sqrt{2}}{3}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ \dfrac{2\sqrt{3}}{3}\qquad\textbf{(E)}\ \sqrt{2} $

2013 JBMO TST - Turkey, 7

In a convex quadrilateral $ABCD$ diagonals intersect at $E$ and $BE = \sqrt{2}\cdot ED, \: \angle BEC = 45^{\circ}.$ Let $F$ be the foot of the perpendicular from $A$ to $BC$ and $P$ be the second intersection point of the circumcircle of triangle $BFD$ and line segment $DC$. Find $\angle APD$.

Kyiv City MO Juniors 2003+ geometry, 2011.9.41

The triangle $ABC$ is inscribed in a circle. At points $A$ and $B$ are tangents to this circle, which intersect at point $T$. A line drawn through the point $T$ parallel to the side $AC$ intersects the side $BC$ at the point $D$. Prove that $AD = CD$.

2006 Kazakhstan National Olympiad, 4

grade IX P4, X P3 The bisectors of the angles $ A $ and $ C $ of the triangle $ ABC $ intersect the circumscirbed circle of this triangle at the points $ A_0 $ and $ C_0 $, respectively. The straight line passing through the center of the inscribed circle of triangle $ ABC $ parallel to the side of $ AC $, intersects with the line $ A_0C_0 $ at $ P $. Prove that the line $ PB $ is tangent to the circumcircle of the triangle $ ABC $. grade XI P4 The bisectors of the angles $ A $ and $ C $ of the triangle $ ABC $ intersect the sides at the points $ A_1 $ and $ C_1 $, and the circumcircle of this triangle at points $ A_0 $ and $ C_0 $ respectively. Straight lines $ A_1C_1 $ and $ A_0C_0 $ intersect at point $ P $. Prove that the segment connecting $ P $ with the center inscribed circles of triangle $ ABC $, parallel to $ AC $.

1998 Moldova Team Selection Test, 9

A hexagon is inscribed in a circle of radius $r$. Two of the sides of the hexagon have length $1$, two have length $2$ and two have length $3$. Show that $r$ satisfies the equation $2r^3 - 7r - 3 = 0$.

1988 IMO Longlists, 34

Let $ ABC$ be an acute-angled triangle. The lines $ L_{A}$, $ L_{B}$ and $ L_{C}$ are constructed through the vertices $ A$, $ B$ and $ C$ respectively according the following prescription: Let $ H$ be the foot of the altitude drawn from the vertex $ A$ to the side $ BC$; let $ S_{A}$ be the circle with diameter $ AH$; let $ S_{A}$ meet the sides $ AB$ and $ AC$ at $ M$ and $ N$ respectively, where $ M$ and $ N$ are distinct from $ A$; then let $ L_{A}$ be the line through $ A$ perpendicular to $ MN$. The lines $ L_{B}$ and $ L_{C}$ are constructed similarly. Prove that the lines $ L_{A}$, $ L_{B}$ and $ L_{C}$ are concurrent.

Brazil L2 Finals (OBM) - geometry, 2021.3

Let $ABC$ be a scalene triangle and $\omega$ is your incircle. The sides $BC,CA$ and $AB$ are tangents to $\omega$ in $X,Y,Z$ respectively. Let $M$ be the midpoint of $BC$ and $D$ is the intersection point of $BC$ with the angle bisector of $\angle BAC$. Prove that $\angle BAX=\angle MAC$ if and only if $YZ$ passes by the midpoint of $AD$.

2020 Azerbaijan Senior NMO, 3

Let $ABC$ be a scalene triangle, and let $I$ be its incenter. A point $D$ is chosen on line $BC$, such that the circumcircle of triangle $BID$ intersects $AB$ at $E\neq B$, and the circumcircle of triangle $CID$ intersects $AC$ at $F\neq C$. Circumcircle of triangle $EDF$ intersects $AB$ and $AC$ at $M$ and $N$, respectively. Lines $FD$ and $IC$ intersect at $Q$, and lines $ED$ and $BI$ intersect at $P$. Prove that $EN\parallel MF\parallel PQ$.

2015 Azerbaijan JBMO TST, 3

Acute-angled $\triangle{ABC}$ triangle with condition $AB<AC<BC$ has cimcumcircle $C^,$ with center $O$ and radius $R$.And $BD$ and $CE$ diametrs drawn.Circle with center $O$ and radius $R$ intersects $AC$ at $K$.And circle with center $A$ and radius $AD$ intersects $BA$ at $L$.Prove that $EK$ and $DL$ lines intersects at circle $C^,$.

2010 ELMO Shortlist, 1

Let $ABC$ be a triangle. Let $A_1$, $A_2$ be points on $AB$ and $AC$ respectively such that $A_1A_2 \parallel BC$ and the circumcircle of $\triangle AA_1A_2$ is tangent to $BC$ at $A_3$. Define $B_3$, $C_3$ similarly. Prove that $AA_3$, $BB_3$, and $CC_3$ are concurrent. [i]Carl Lian.[/i]

2001 Romania Team Selection Test, 3

The tangents at $A$ and $B$ to the circumcircle of the acute triangle $ABC$ intersect the tangent at $C$ at the points $D$ and $E$, respectively. The line $AE$ intersects $BC$ at $P$ and the line $BD$ intersects $AC$ at $R$. Let $Q$ and $S$ be the midpoints of the segments $AP$ and $BR$ respectively. Prove that $\angle ABQ=\angle BAS$.

2012 USA TSTST, 7

Triangle $ABC$ is inscribed in circle $\Omega$. The interior angle bisector of angle $A$ intersects side $BC$ and $\Omega$ at $D$ and $L$ (other than $A$), respectively. Let $M$ be the midpoint of side $BC$. The circumcircle of triangle $ADM$ intersects sides $AB$ and $AC$ again at $Q$ and $P$ (other than $A$), respectively. Let $N$ be the midpoint of segment $PQ$, and let $H$ be the foot of the perpendicular from $L$ to line $ND$. Prove that line $ML$ is tangent to the circumcircle of triangle $HMN$.