This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2009 Silk Road, 2

Bisectors of triangle ABC of an angles A and C intersect with BC and AB at points A1 and C1 respectively. Lines AA1 and CC1 intersect circumcircle of triangle ABC at points A2 and C2 respectively. K is intersection point of C1A2 and A1C2. I is incenter of ABC. Prove that the line KI divides AC into two equal parts.

1994 APMO, 2

Given a nondegenerate triangle $ABC$, with circumcentre $O$, orthocentre $H$, and circumradius $R$, prove that $|OH| < 3R$.

2015 Canada National Olympiad, 4

Let $ABC$ be an acute-angled triangle with circumcenter $O$. Let $I$ be a circle with center on the altitude from $A$ in $ABC$, passing through vertex $A$ and points $P$ and $Q$ on sides $AB$ and $AC$. Assume that \[BP\cdot CQ = AP\cdot AQ.\] Prove that $I$ is tangent to the circumcircle of triangle $BOC$.

2014 Spain Mathematical Olympiad, 3

Let $B$ and $C$ be two fixed points on a circle centered at $O$ that are not diametrically opposed. Let $A$ be a variable point on the circle distinct from $B$ and $C$ and not belonging to the perpendicular bisector of $BC$. Let $H$ be the orthocenter of $\triangle ABC$, and $M$ and $N$ be the midpoints of the segments $BC$ and $AH$, respectively. The line $AM$ intersects the circle again at $D$, and finally, $NM$ and $OD$ intersect at $P$. Determine the locus of points $P$ as $A$ moves around the circle.

2017 Junior Balkan Team Selection Tests - Romania, 1

Let $P$ be a point in the interior of the acute-angled triangle $ABC$. Prove that if the reflections of $P$ with respect to the sides of the triangle lie on the circumcircle of the triangle, then $P$ is the orthocenter of $ABC$.

2002 Romania National Olympiad, 2

Let $ABC$ be a right triangle where $\measuredangle A = 90^\circ$ and $M\in (AB)$ such that $\frac{AM}{MB}=3\sqrt{3}-4$. It is known that the symmetric point of $M$with respect to the line $GI$ lies on $AC$. Find the measure of $\measuredangle B$.

2012 NIMO Problems, 6

In rhombus $NIMO$, $MN = 150\sqrt{3}$ and $\measuredangle MON = 60^{\circ}$. Denote by $S$ the locus of points $P$ in the interior of $NIMO$ such that $\angle MPO \cong \angle NPO$. Find the greatest integer not exceeding the perimeter of $S$. [i]Proposed by Evan Chen[/i]

1998 Belarus Team Selection Test, 3

Let $ A_1A_2A_3$ be a non-isosceles triangle with incenter $ I.$ Let $ C_i,$ $ i \equal{} 1, 2, 3,$ be the smaller circle through $ I$ tangent to $ A_iA_{i\plus{}1}$ and $ A_iA_{i\plus{}2}$ (the addition of indices being mod 3). Let $ B_i, i \equal{} 1, 2, 3,$ be the second point of intersection of $ C_{i\plus{}1}$ and $ C_{i\plus{}2}.$ Prove that the circumcentres of the triangles $ A_1 B_1I,A_2B_2I,A_3B_3I$ are collinear.

2017 China Northern MO, 5

Triangle \(ABC\) has \(AB > AC\) and \(\angle A = 60^\circ \). Let \(M\) be the midpoint of \(BC\), \(N\) be the point on segment \(AB\) such that \(\angle BNM = 30^\circ\). Let \(D,E\) be points on \(AB, AC\) respectively. Let \(F, G, H\) be the midpoints of \(BE, CD, DE\) respectively. Let \(O\) be the circumcenter of triangle \(FGH\). Prove that \(O\) lies on line \(MN\).

India EGMO 2021 TST, 3

In acute $\triangle ABC$ with circumcircle $\Gamma$ and incentre $I$, the incircle touches side $AB$ at $F$. The external angle bisector of $\angle ACB$ meets ray $AB$ at $L$. Point $K$ lies on the arc $CB$ of $\Gamma$ not containing $A$, such that $\angle CKI=\angle IKL$. Ray $KI$ meets $\Gamma$ again at $D\ne K$. Prove that $\angle ACF =\angle DCB$.

2021 JHMT HS, 10

Parallelogram $JHMT$ satisfies $JH=11$ and $HM=6,$ and point $P$ lies on $\overline{MT}$ such that $JP$ is an altitude of $JHMT.$ The circumcircles of $\triangle{HMP}$ and $\triangle{JMT}$ intersect at the point $Q\neq M.$ Let $A$ be the point lying on $\overline{JH}$ and the circumcircle of $\triangle{JMT}.$ If $MQ=10,$ then the perimeter of $\triangle{JAM}$ can be expressed in the form $\sqrt{a}+\tfrac{b}{c},$ where $a, \ b,$ and $c$ are positive integers, $a$ is not divisible by the square of any prime, and $b$ and $c$ are relatively prime. Find $a+b+c.$

2005 China Second Round Olympiad, 1

In $\triangle ABC$, $AB>AC$, $l$ is a tangent line of the circumscribed circle of $\triangle ABC$, passing through $A$. The circle, centered at $A$ with radius $AC$, intersects $AB$ at $D$, and line $l$ at $E, F$. Prove that lines $DE, DF$ pass through the incenter and an excenter of $\triangle ABC$ respectively.

2002 IMO Shortlist, 1

Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.

2020 Korea - Final Round, P5

Let $ABC$ be an acute triangle such that $\overline{AB}=\overline{AC}$. Let $M, L, N$ be the midpoints of segment $BC, AM, AC$, respectively. The circumcircle of triangle $AMC$, denoted by $\Omega$, meets segment $AB$ at $P(\neq A)$, and the segment $BL$ at $Q$. Let $O$ be the circumcenter of triangle $BQC$. Suppose that the lines $AC$ and $PQ$ meet at $X$, $OB$ and $LN$ meet at $Y$, and $BQ$ and $CO$ meets at $Z$. Prove that the points $X, Y, Z$ are collinear.

2009 Romania Team Selection Test, 2

Prove that the circumcircle of a triangle contains exactly 3 points whose Simson lines are tangent to the triangle's Euler circle and these points are the vertices of an equilateral triangle.

2003 APMO, 2

Suppose $ABCD$ is a square piece of cardboard with side length $a$. On a plane are two parallel lines $\ell_1$ and $\ell_2$, which are also $a$ units apart. The square $ABCD$ is placed on the plane so that sides $AB$ and $AD$ intersect $\ell_1$ at $E$ and $F$ respectively. Also, sides $CB$ and $CD$ intersect $\ell_2$ at $G$ and $H$ respectively. Let the perimeters of $\triangle AEF$ and $\triangle CGH$ be $m_1$ and $m_2$ respectively. Prove that no matter how the square was placed, $m_1+m_2$ remains constant.

2007 Moldova Team Selection Test, 3

Let $ABC$ be a triangle. A circle is tangent to sides $AB, AC$ and to the circumcircle of $ABC$ (internally) at points $P, Q, R$ respectively. Let $S$ be the point where $AR$ meets $PQ$. Show that \[\angle{SBA}\equiv \angle{SCA}\]

2007 Italy TST, 2

Let $ABC$ a acute triangle. (a) Find the locus of all the points $P$ such that, calling $O_{a}, O_{b}, O_{c}$ the circumcenters of $PBC$, $PAC$, $PAB$: \[\frac{ O_{a}O_{b}}{AB}= \frac{ O_{b}O_{c}}{BC}=\frac{ O_{c}O_{a}}{CA}\] (b) For all points $P$ of the locus in (a), show that the lines $AO_{a}$, $BO_{b}$ , $CO_{c}$ are cuncurrent (in $X$); (c) Show that the power of $X$ wrt the circumcircle of $ABC$ is: \[-\frac{ a^{2}+b^{2}+c^{2}-5R^{2}}4\] Where $a=BC$ , $b=AC$ and $c=AB$.

2019 CMIMC, 9

Let $ABCD$ be a square of side length $1$, and let $P_1, P_2$ and $P_3$ be points on the perimeter such that $\angle P_1P_2P_3 = 90^\circ$ and $P_1, P_2, P_3$ lie on different sides of the square. As these points vary, the locus of the circumcenter of $\triangle P_1P_2P_3$ is a region $\mathcal{R}$; what is the area of $\mathcal{R}$?

2007 Greece Junior Math Olympiad, 1

In a triangle $ABC$ with the incentre $I,$ the angle bisector $AD$ meets the circumcircle of triangle $BIC$ at point $N\neq I$. a) Express the angles of $\triangle BCN$ in terms of the angles of triangle $ABC$. b) Show that the circumcentre of triangle $BIC$ is at the intersection of $AI$ and the circumcentre of $ABC$.

2018 Yasinsky Geometry Olympiad, 3

Point $O$ is the center of circumcircle $\omega$ of the isosceles triangle $ABC$ ($AB = AC$). Bisector of the angle $\angle C$ intersects $\omega$ at the point $W$. Point $Q$ is the center of the circumcircle of the triangle $OWB$. Construct the triangle $ABC$ given the points $Q,W, B$. (Andrey Mostovy)

2006 Australia National Olympiad, 1

In a square $ABCD$, $E$ is a point on diagonal $BD$. $P$ and $Q$ are the circumcentres of $\triangle ABE$ and $\triangle ADE$ respectively. Prove that $APEQ$ is a square.

2012 Poland - Second Round, 2

Let $ABC$ be a triangle with $\angle A=60^{\circ}$ and $AB\neq AC$, $I$-incenter, $O$-circumcenter. Prove that perpendicular bisector of $AI$, line $OI$ and line $BC$ have a common point.

1994 All-Russian Olympiad, 3

Let $a,b,c$ be the sides of a triangle, let $m_a,m_b,m_c$ be the corresponding medians, and let $D$ be the diameter of the circumcircle of the triangle. Prove that $\frac{a^2+b^2}{m_c}+\frac{a^2+c^2}{m_b}+\frac{b^2+c^2}{m_a} \leq 6D$.

2009 Hong Kong TST, 4

Two circles $ C_1,C_2$ with different radii are given in the plane, they touch each other externally at $ T$. Consider any points $ A\in C_1$ and $ B\in C_2$, both different from $ T$, such that $ \angle ATB \equal{} 90^{\circ}$. (a) Show that all such lines $ AB$ are concurrent. (b) Find the locus of midpoints of all such segments $ AB$.