Found problems: 3882
2020-IMOC, G3
Triangle $ABC$ has incenter $I$ and circumcenter $O$. $AI, BI, CI$ intersect the circumcircle of $ABC$ again at $M_A, M_B, M_C$, respectively. Show that the Euler line of $BIC$ passes through the circumcenter of $OM_BM_C$.
(houkai)
2008 Rioplatense Mathematical Olympiad, Level 3, 2
In triangle $ABC$, where $AB<AC$, let $X$, $Y$, $Z$ denote the points where the incircle is tangent to $BC$, $CA$, $AB$, respectively. On the circumcircle of $ABC$, let $U$ denote the midpoint of the arc $BC$ that contains the point $A$. The line $UX$ meets the circumcircle again at the point $K$. Let $T$ denote the point of intersection of $AK$ and $YZ$. Prove that $XT$ is perpendicular to $YZ$.
MathLinks Contest 7th, 5.2
Let $ A^{\prime}$ be an arbitrary point on the side $ BC$ of a triangle $ ABC$. Denote by $ \mathcal{T}_{A}^{b}$, $ \mathcal{T}_{A}^{c}$ the circles simultanously tangent to $ AA^{\prime}$, $ A^{\prime}B$, $ \Gamma$ and $ AA^{\prime}$, $ A^{\prime}C$, $ \Gamma$, respectively, where $ \Gamma$ is the circumcircle of $ ABC$. Prove that $ \mathcal{T}_{A}^{b}$, $ \mathcal{T}_{A}^{c}$ are congruent if and only if $ AA^{\prime}$ passes through the Nagel point of triangle $ ABC$.
([i]If $ M,N,P$ are the points of tangency of the excircles of the triangle $ ABC$ with the sides of the triangle $ BC$, $ CA$ and $ AB$ respectively, then the Nagel point of the triangle is the intersection point of the lines $ AM$, $ BN$ and $ CP$[/i].)
2017 All-Russian Olympiad, 8
In a non-isosceles triangle $ABC$,$O$ and $I$ are circumcenter and incenter,respectively.$B^\prime$ is reflection of $B$ with respect to $OI$ and lies inside the angle $ABI$.Prove that the tangents to circumcirle of $\triangle BB^\prime I$ at $B^\prime$,$I$ intersect on $AC$. (A. Kuznetsov)
2010 Middle European Mathematical Olympiad, 3
We are given a cyclic quadrilateral $ABCD$ with a point $E$ on the diagonal $AC$ such that $AD=AE$ and $CB=CE$. Let $M$ be the center of the circumcircle $k$ of the triangle $BDE$. The circle $k$ intersects the line $AC$ in the points $E$ and $F$. Prove that the lines $FM$, $AD$ and $BC$ meet at one point.
[i](4th Middle European Mathematical Olympiad, Individual Competition, Problem 3)[/i]
2014 Turkey Team Selection Test, 2
A circle $\omega$ cuts the sides $BC,CA,AB$ of the triangle $ABC$ at $A_1$ and $A_2$; $B_1$ and $B_2$; $C_1$ and $C_2$, respectively. Let $P$ be the center of $\omega$. $A'$ is the circumcenter of the triangle $A_1A_2P$, $B'$ is the circumcenter of the triangle $B_1B_2P$, $C'$ is the circumcenter of the triangle $C_1C_2P$. Prove that $AA', BB'$ and $CC'$ concur.
2008 China Girls Math Olympiad, 5
In convex quadrilateral $ ABCD$, $ AB \equal{} BC$ and $ AD \equal{} DC$. Point $ E$ lies on segment $ AB$ and point $ F$ lies on segment $ AD$ such that $ B$, $ E$, $ F$, $ D$ lie on a circle. Point $ P$ is such that triangles $ DPE$ and $ ADC$ are similar and the corresponding vertices are in the same orientation (clockwise or counterclockwise). Point $ Q$ is such that triangles $ BQF$ and $ ABC$ are similar and the corresponding vertices are in the same orientation. Prove that points $ A$, $ P$, $ Q$ are collinear.
2008 All-Russian Olympiad, 4
Each face of a tetrahedron can be placed in a circle of radius $ 1$. Show that the tetrahedron can be placed in a sphere of radius $ \frac{3}{2\sqrt2}$.
2012 Vietnam National Olympiad, 3
Let $ABCD$ be a cyclic quadrilateral with circumcentre $O,$ and the pair of opposite sides not parallel with each other. Let $M=AB\cap CD$ and $N=AD\cap BC.$ Denote, by $P,Q,S,T;$ the intersection of the internal angle bisectors of $\angle MAN$ and $\angle MBN;$ $\angle MBN$ and $\angle MCN;$ $\angle MDN$ and $\angle MAN;$ $\angle MCN$ and $\angle MDN.$ Suppose that the four points $P,Q,S,T$ are distinct.
(a) Show that the four points $P,Q,S,T$ are concyclic. Find the centre of this circle, and denote it as $I.$
(b) Let $E=AC\cap BD.$ Prove that $E,O,I$ are collinear.
2008 Brazil Team Selection Test, 3
Let $ ABC$ be a fixed triangle, and let $ A_1$, $ B_1$, $ C_1$ be the midpoints of sides $ BC$, $ CA$, $ AB$, respectively. Let $ P$ be a variable point on the circumcircle. Let lines $ PA_1$, $ PB_1$, $ PC_1$ meet the circumcircle again at $ A'$, $ B'$, $ C'$, respectively. Assume that the points $ A$, $ B$, $ C$, $ A'$, $ B'$, $ C'$ are distinct, and lines $ AA'$, $ BB'$, $ CC'$ form a triangle. Prove that the area of this triangle does not depend on $ P$.
[i]Author: Christopher Bradley, United Kingdom [/i]
2010 Junior Balkan Team Selection Tests - Moldova, 3
The tangent to the circle circumscribed to the triangle $ABC$, taken through the vertex $A$, intersects the line $BC$ at the point $P$, and the tangents to the same circle, taken through $B$ and $C$, intersect the lines $AC$ and $AB$, respectively at the points $Q$ and $R$. Prove that the points $P, Q$ ¸ and $R$ are collinear.
2011 Albania National Olympiad, 5
The triangle $ABC$ acute with gravity center $M$ is such that $\angle AMB = 2 \angle ACB$. Prove that:
[b](a)[/b] $AB^4=AC^4+BC^4-AC^2 \cdot BC^2,$
[b](b)[/b] $\angle ACB \geq 60^o$.
2003 Italy TST, 1
The incircle of a triangle $ABC$ touches the sides $AB,BC,CA$ at points $D,E,F$ respectively. The line through $A$ parallel to $DF$ meets the line through $C$ parallel to $EF$ at $G$.
$(a)$ Prove that the quadrilateral $AICG$ is cyclic.
$(b)$ Prove that the points $B,I,G$ are collinear.
2006 India IMO Training Camp, 1
Let $ABC$ be a triangle with inradius $r$, circumradius $R$, and with sides $a=BC,b=CA,c=AB$. Prove that
\[\frac{R}{2r} \ge \left(\frac{64a^2b^2c^2}{(4a^2-(b-c)^2)(4b^2-(c-a)^2)(4c^2-(a-b)^2)}\right)^2.\]
2012 Indonesia TST, 2
Let $ABC$ be a triangle, and its incenter touches the sides $BC,CA,AB$ at $D,E,F$ respectively. Let $AD$ intersects the incircle of $ABC$ at $M$ distinct from $D$. Let $DF$ intersects the circumcircle of $CDM$ at $N$ distinct from $D$. Let $CN$ intersects $AB$ at $G$. Prove that $EC = 3GF$.
2005 MOP Homework, 2
Let $ABC$ be a triangle, and let $D$ be a point on side $AB$. Circle $\omega_1$ passes through $A$ and $D$ and is tangent to line $AC$ at $A$. Circle $\omega_2$ passes through $B$ and $D$ and is tangent to line $BC$ at $B$. Circles $\omega_1$ and $\omega_2$ meet at $D$ and $E$. Point $F$ is the reflection of $C$ across the perpendicular bisector of $AB$. Prove that points $D$, $E$, and $F$ are collinear.
2011 Brazil Team Selection Test, 3
Let $ABC$ be an acute triangle with $\angle BAC=30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line $AC$ at $B_1$ and $B_2$, respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line $AB$ at $C_1$ and $C_2$, respectively. Suppose that the circles with diameters $B_1B_2$ and $C_1C_2$ meet inside the triangle $ABC$ at point $P$. Prove that $\angle BPC=90^{\circ}$ .
2022 Moscow Mathematical Olympiad, 3
Bisector $AL$ is drawn in an acute triangle $ABC$. On the line $LA$ beyond the point $A$, the point K is chosen with $AK = AL$. Circumcirles of triangles $BLK$ and $CLK$ intersect segments $AC$ and $AB$ at points $P$ and $Q$
respectively. Prove that lines $PQ$ and $BC$ are parallel.
1998 All-Russian Olympiad, 7
Let n be an integer at least 4. In a convex n-gon, there is NO four vertices lie on a same circle. A circle is called circumscribed if it passes through 3 vertices of the n-gon and contains all other vertices. A circumscribed circle is called boundary if it passes through 3 consecutive vertices, a circumscribed circle is called inner if it passes through 3 pairwise non-consecutive points. Prove the number of boundary circles is 2 more than the number of inner circles.
1997 IberoAmerican, 2
In a triangle $ABC$, it is drawn a circumference with center in the incenter $I$ and that meet twice each of the sides of the triangle: the segment $BC$ on $D$ and $P$ (where $D$ is nearer two $B$); the segment $CA$ on $E$ and $Q$ (where $E$ is nearer to $C$); and the segment $AB$ on $F$ and $R$ ( where $F$ is nearer to $A$).
Let $S$ be the point of intersection of the diagonals of the quadrilateral $EQFR$. Let $T$ be the point of intersection of the diagonals of the quadrilateral $FRDP$. Let $U$ be the point of intersection of the diagonals of the quadrilateral $DPEQ$.
Show that the circumcircle to the triangle $\triangle{FRT}$, $\triangle{DPU}$ and $\triangle{EQS}$ have a unique point in common.
2019 Middle European Mathematical Olympiad, 5
Let $ABC$ be an acute-angled triangle such that $AB<AC$. Let $D$ be the point of intersection of the perpendicular bisector of the side $BC$ with the side $AC$. Let $P$ be a point on the shorter arc $AC$ of the circumcircle of the triangle $ABC$ such that $DP \parallel BC$. Finally, let $M$ be the midpoint of the side $AB$. Prove that $\angle APD=\angle MPB$.
[i]Proposed by Dominik Burek, Poland[/i]
2017 Oral Moscow Geometry Olympiad, 4
We consider triangles $ABC$, in which the point $M$ lies on the side $AB$, $AM = a$, $BM = b$, $CM = c$ ($c <a, c <b$). Find the smallest radius of the circumcircle of such triangles.
2014 Iran Team Selection Test, 6
The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $BC$ at $D$.
let $X$ is a point on arc $BC$ from circumcircle of triangle $ABC$ such that if $E,F$ are feet of perpendicular from $X$ on $BI,CI$ and $M$ is midpoint of $EF$ we have $MB=MC$.
prove that $\widehat{BAD}=\widehat{CAX}$
2008 Costa Rica - Final Round, 6
Let $ O$ be the circumcircle of a $ \Delta ABC$ and let $ I$ be its incenter, for a point $ P$ of the plane let $ f(P)$ be the point obtained by reflecting $ P'$ by the midpoint of $ OI$, with $ P'$ the homothety of $ P$ with center $ O$ and ratio $ \frac{R}{r}$ with $ r$ the inradii and $ R$ the circumradii,(understand it by $ \frac{OP}{OP'}\equal{}\frac{R}{r}$). Let $ A_1$, $ B_1$ and $ C_1$ the midpoints of $ BC$, $ AC$ and $ AB$, respectively. Show that the rays $ A_1f(A)$, $ B_1f(B)$ and $ C_1f(C)$ concur on the incircle.
2020 Yasinsky Geometry Olympiad, 1
Given a right triangle $ABC$, the point $M$ is the midpoint of the hypotenuse $AB$. A circle is circumscribed around the triangle $BCM$, which intersects the segment $AC$ at a point $Q$ other than $C$. It turned out that the segment $QA$ is twice as large as the side $BC$. Find the acute angles of triangle $ABC$.
(Mykola Moroz)