This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2001 India IMO Training Camp, 1

If on $ \triangle ABC$, trinagles $ AEB$ and $ AFC$ are constructed externally such that $ \angle AEB\equal{}2 \alpha$, $ \angle AFB\equal{} 2 \beta$. $ AE\equal{}EB$, $ AF\equal{}FC$. COnstructed externally on $ BC$ is triangle $ BDC$ with $ \angle DBC\equal{} \beta$ , $ \angle BCD\equal{} \alpha$. Prove that 1. $ DA$ is perpendicular to $ EF$. 2. If $ T$ is the projection of $ D$ on $ BC$, then prove that $ \frac{DA}{EF}\equal{} 2 \frac{DT}{BC}$.

2007 Iran Team Selection Test, 3

$O$ is a point inside triangle $ABC$ such that $OA=OB+OC$. Suppose $B',C'$ be midpoints of arcs $\overarc{AOC}$ and $AOB$. Prove that circumcircles $COC'$ and $BOB'$ are tangent to each other.

1987 IMO Longlists, 31

Construct a triangle $ABC$ given its side $a = BC$, its circumradius $R \ (2R \geq a)$, and the difference $\frac{1}{k} = \frac{1}{c}-\frac{1}{b}$, where $c = AB$ and $ b = AC.$

2013 Tournament of Towns, 3

Let $ABC$ be an equilateral triangle with centre $O$. A line through $C$ meets the circumcircle of triangle $AOB$ at points $D$ and $E$. Prove that points $A, O$ and the midpoints of segments $BD, BE$ are concyclic.

Kyiv City MO Seniors Round2 2010+ geometry, 2018.11.2

In the quadrilateral $ABCD $, $AB = BC $, the point $K $ is the midpoint of the side $CD $, the rays $BK $ and $AD $ intersect at the point $M $ , the circumscribed circle $ \Delta ABM $ intersects the line $AC $ for the second time at the point $P $. Prove that $\angle BKP = 90 {} ^ \circ $. (Anton Trygub)

2007 USA Team Selection Test, 5

Triangle $ ABC$ is inscribed in circle $ \omega$. The tangent lines to $ \omega$ at $ B$ and $ C$ meet at $ T$. Point $ S$ lies on ray $ BC$ such that $ AS \perp AT$. Points $ B_1$ and $ C_1$ lie on ray $ ST$ (with $ C_1$ in between $ B_1$ and $ S$) such that $ B_1T \equal{} BT \equal{} C_1T$. Prove that triangles $ ABC$ and $ AB_1C_1$ are similar to each other.

2010 Estonia Team Selection Test, 4

In an acute triangle $ABC$ the angle $C$ is greater than the angle $A$. Let $AE$ be a diameter of the circumcircle of the triangle. Let the intersection point of the ray $AC$ and the tangent of the circumcircle through the vertex $B$ be $K$. The perpendicular to $AE$ through $K$ intersects the circumcircle of the triangle $BCK$ for the second time at point $D$. Prove that $CE$ bisects the angle $BCD$.

Geometry Mathley 2011-12, 12.3

Points $E,F$ are chosen on the sides $CA,AB$ of triangle $ABC$. Let $(K)$ be the circumcircle of triangle $AEF$. The tangents at $E, F$ of $(K)$ intersect at $T$ . Prove that (a) $T$ is on $BC$ if and only if $BE$ meets $CF$ at a point on the circle $(K)$, (b) $EF, PQ,BC$ are concurrent given that $BE$ meets $FT$ at $M, CF$ meets $ET$ at $N, AM$ and $AN$ intersects $(K)$ at $P,Q$ distinct from $A$. Trần Quang Hùng

2016 All-Russian Olympiad, 8

Medians $AM_A,BM_B,CM_C$ of triangle $ABC$ intersect at $M$.Let $\Omega_A$ be circumcircle of triangle passes through midpoint of $AM$ and tangent to $BC$ at $M_A$.Define $\Omega_B$ and $\Omega_C$ analogusly.Prove that $\Omega_A,\Omega_B$ and $\Omega_C$ intersect at one point.(A.Yakubov) [hide=P.S]sorry for my mistake in translation :blush: :whistling: .thank you jred for your help :coolspeak: [/hide]

2019-IMOC, G3

Given a scalene triangle $\vartriangle ABC$ has orthocenter $H$ and circumcircle $\Omega$. The tangent lines passing through $A,B,C$ are $\ell_a,\ell_b,\ell_c$. Suppose that the intersection of $\ell_b$ and $\ell_c$ is $D$. The foots of $H$ on $\ell_a,AD$ are $P,Q$ respectively. Prove that $PQ$ bisects segment $BC$. [img]https://4.bp.blogspot.com/-iiQoxMG8bEs/XnYNK7R8S3I/AAAAAAAALeY/FYvSuF6vQQsofASnXJUgKZ1T9oNnd-02ACK4BGAYYCw/s400/imoc2019g3.png[/img]

2021 Romania National Olympiad, 1

Let $ABC$ be an acute-angled triangle with the circumcenter $O$. Let $D$ be the foot of the altitude from $A$. If $OD\parallel AB$, show that $\sin 2B = \cot C$. [i]Mădălin Mitrofan[/i]

2013 Sharygin Geometry Olympiad, 8

Let $X$ be an arbitrary point inside the circumcircle of a triangle $ABC$. The lines $BX$ and $CX$ meet the circumcircle in points $K$ and $L$ respectively. The line $LK$ intersects $BA$ and $AC$ at points $E$ and $F$ respectively. Find the locus of points $X$ such that the circumcircles of triangles $AFK$ and $AEL$ touch.

2016 India Regional Mathematical Olympiad, 5

Let $ABC$ be a right angled triangle with $\angle B=90^{\circ}$. Let $AD$ be the bisector of angle $A$ with $D$ on $BC$ . Let the circumcircle of triangle $ACD$ intersect $AB$ again at $E$; and let the circumcircle of triangle $ABD$ intersect $AC$ again at $F$ . Let $K$ be the reflection of $E$ in the line $BC$ . Prove that $FK = BC$.

2011 Preliminary Round - Switzerland, 1

Let $\triangle{ABC}$ a triangle with $\angle{CAB}=90^{\circ}$ and $L$ a point on the segment $BC$. The circumcircle of triangle $\triangle{ABL}$ intersects $AC$ at $M$ and the circumcircle of triangle $\triangle{CAL}$ intersects $AB$ at $N$. Show that $L$, $M$ and $N$ are collinear.

2021 Baltic Way, 14

Let $ABC$ be a triangle with circumcircle $\Gamma$ and circumcentre $O$. Denote by $M$ the midpoint of $BC$. The point $D$ is the reflection of $A$ over $BC$, and the point $E$ is the intersection of $\Gamma$ and the ray $MD$. Let $S$ be the circumcentre of the triangle $ADE$. Prove that the points $A$, $E$, $M$, $O$, and $S$ lie on the same circle.

2005 Postal Coaching, 20

In the following, the point of intersection of two lines $ g$ and $ h$ will be abbreviated as $ g\cap h$. Suppose $ ABC$ is a triangle in which $ \angle A \equal{} 90^{\circ}$ and $ \angle B > \angle C$. Let $ O$ be the circumcircle of the triangle $ ABC$. Let $ l_{A}$ and $ l_{B}$ be the tangents to the circle $ O$ at $ A$ and $ B$, respectively. Let $ BC \cap l_{A} \equal{} S$ and $ AC \cap l_{B} \equal{} D$. Furthermore, let $ AB \cap DS \equal{} E$, and let $ CE \cap l_{A} \equal{} T$. Denote by $ P$ the foot of the perpendicular from $ E$ on $ l_{A}$. Denote by $ Q$ the point of intersection of the line $ CP$ with the circle $ O$ (different from $ C$). Denote by $ R$ be the point of intersection of the line $ QT$ with the circle $ O$ (different from $ Q$). Finally, define $ U \equal{} BR \cap l_{A}$. Prove that \[ \frac {SU \cdot SP}{TU \cdot TP} \equal{} \frac {SA^{2}}{TA^{2}}. \]

2024 Romania National Olympiad, 2

We consider the inscriptible pentagon $ABCDE$ in which $AB=BC=CD$ and the centroid of the pentagon coincides with the circumcenter. Prove that the pentagon $ABCDE$ is regular. [i]The centroid of a pentagon is the point in the plane of the pentagon whose position vector is equal to the average of the position vectors of the vertices.[/i]

2001 Croatia Team Selection Test, 2

Circles $k_1$ and $k_2$ intersect at $P$ and $Q$, and $A$ and $B$ are the tangency points of their common tangent that is closer to $P$ (where $A$ is on $k_1$ and $B$ on $k_2$). The tangent to $k_1$ at $P$ intersects $k_2$ again at $C$. The lines $AP$ and $BC$ meet at $R$. Show that the lines $BP$ and $BC$ are tangent to the circumcircle of triangle $PQR$.

2017 Iran MO (3rd round), 2

Assume that $P$ be an arbitrary point inside of triangle $ABC$. $BP$ and $CP$ intersects $AC$ and $AB$ in $E$ and $F$, respectively. $EF$ intersects the circumcircle of $ABC$ in $B'$ and $C'$ (Point $E$ is between of $F$ and $B'$). Suppose that $B'P$ and $C'P$ intersects $BC$ in $C''$ and $B''$ respectively. Prove that $B'B''$ and $C'C''$ intersect each other on the circumcircle of $ABC$.

2014 USA TSTST, 2

Consider a convex pentagon circumscribed about a circle. We name the lines that connect vertices of the pentagon with the opposite points of tangency with the circle [i]gergonnians[/i]. (a) Prove that if four gergonnians are conncurrent, the all five of them are concurrent. (b) Prove that if there is a triple of gergonnians that are concurrent, then there is another triple of gergonnians that are concurrent.

1999 Tournament Of Towns, 2

Let all vertices of a convex quadrilateral $ABCD$ lie on the circumference of a circle with center $O$. Let $F$ be the second intersection point of the circumcircles of the triangles $ABO$ and $CDO$. Prove that the circle passing through the points $A, F$ and $D$ also passes through the intersection point of the segments $AC$ and $BD$. (A Zaslavskiy)

1997 China Team Selection Test, 1

Given a real number $\lambda > 1$, let $P$ be a point on the arc $BAC$ of the circumcircle of $\bigtriangleup ABC$. Extend $BP$ and $CP$ to $U$ and $V$ respectively such that $BU = \lambda BA$, $CV = \lambda CA$. Then extend $UV$ to $Q$ such that $UQ = \lambda UV$. Find the locus of point $Q$.

2023 Turkey MO (2nd round), 6

On a triangle $ABC$, points $D$, $E$, $F$ are given on the segments $BC$, $AC$, $AB$ respectively such that $DE \parallel AB$, $DF \parallel AC$ and $\frac{BD}{DC}=\frac{AB^2}{AC^2}$ holds. Let the circumcircle of $AEF$ meet $AD$ at $R$ and the line that is tangent to the circumcircle of $ABC$ at $A$ at $S$ again. Let the line $EF$ intersect $BC$ at $L$ and $SR$ at $T$. Prove that $SR$ bisects $AB$ if and only if $BS$ bisects $TL$.

2020 Nigerian MO round 3, #1

in $ABC$ let $E$ and $F$ be points on line $AC$ and $AB$ respectively such that $BE$ is parallel to $CF$. suppose that the circumcircle of $BCE$ meet $AB$ again at $F'$ and the circumcircle of $BCF$ meets $AC$ again at $E'$. show that $BE'$ Is parallel to $CF'$.

1990 AIME Problems, 14

The rectangle $ABCD$ below has dimensions $AB = 12 \sqrt{3}$ and $BC = 13 \sqrt{3}$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $P$. If triangle $ABP$ is cut out and removed, edges $\overline{AP}$ and $\overline{BP}$ are joined, and the figure is then creased along segments $\overline{CP}$ and $\overline{DP}$, we obtain a triangular pyramid, all four of whose faces are isosceles triangles. Find the volume of this pyramid. [asy] pair D=origin, A=(13,0), B=(13,12), C=(0,12), P=(6.5, 6); draw(B--C--P--D--C^^D--A); filldraw(A--P--B--cycle, gray, black); label("$A$", A, SE); label("$B$", B, NE); label("$C$", C, NW); label("$D$", D, SW); label("$P$", P, N); label("$13\sqrt{3}$", A--D, S); label("$12\sqrt{3}$", A--B, E);[/asy]