This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 478

2020 Switzerland - Final Round, 2

Let $ABC$ be an acute triangle. Let $M_A, M_B$ and $M_C$ be the midpoints of sides $BC,CA$, respectively $AB$. Let $M'_A , M'_B$ and $M'_C$ be the the midpoints of the arcs $BC, CA$ and $AB$ respectively of the circumscriberd circle of triangle $ABC$. Let $P_A$ be the intersection of the straight line $M_BM_C$ and the perpendicular to $M'_BM'_C$ through $A$. Define $P_B$ and $P_C$ similarly. Show that the straight line $M_AP_A, M_BP_B$ and $M_CP_C$ intersect at one point.

2015 Cuba MO, 6

Let $ABC$ be a triangle such that $AB > AC$, with a circumcircle $\omega$. Draw the tangents to $\omega$ at $B$ and $C$ and these intersect at $P$. The perpendicular to $AP$ through $A$ cuts $BC$ at $R$. Let $S$ be a point on the segment $PR$ such that $PS = PC$. (a) Prove that the lines $CS$ and $AR$ intersect on $\omega$. (b) Let $M$ be the midpoint of $BC$ and $Q$ be the point of intersection of $CS$ and $AR$. Circle $\omega$ and the circumcircle of $\vartriangle AMP$ intersect at a point $J$ ($J \ne A$), prove that $P$, $J$ and $Q$ are collinear.

2003 All-Russian Olympiad Regional Round, 9.3

In an isosceles triangle $ABC$ ($AB = BC$), the midline parallel to side $BC$ intersects the incircle at a point $F$ that does not lie on the base $AC$. Prove that the tangent to the circle at point $F$ intersects the bisector of angle $C$ on side $AB$.

2019 Balkan MO Shortlist, G8

Given an acute triangle $ABC$, $(c)$ its circumcircle with center $O$ and $H$ the orthocenter of the triangle $ABC$. The line $AO$ intersects $(c)$ at the point $D$. Let $D_1, D_2$ and $H_2, H_3$ be the symmetrical points of the points $D$ and $H$ with respect to the lines $AB, AC$ respectively. Let $(c_1)$ be the circumcircle of the triangle $AD_1D_2$. Suppose that the line $AH$ intersects again $(c_1)$ at the point $U$, the line $H_2H_3$ intersects the segment $D_1D_2$ at the point $K_1$ and the line $DH_3$ intersects the segment $UD_2$ at the point $L_1$. Prove that one of the intersection points of the circumcircles of the triangles $D_1K_1H_2$ and $UDL_1$ lies on the line $K_1L_1$.

2003 Estonia National Olympiad, 3

Let $ABC$ be a triangle and $A_1, B_1, C_1$ points on $BC, CA, AB$, respectively, such that the lines $AA_1, BB_1, CC_1$ meet at a single point. It is known that $A, B_1, A_1, B$ are concyclic and $B, C_1, B_1, C$ are concyclic. Prove that a) $C, A_1, C_1, A$ are concyclic, b) $AA_1,, BB_1, CC_1$ are the heights of $ABC$.

Kyiv City MO Juniors 2003+ geometry, 2020.7.41

In the quadrilateral $ABCD$, $AB = BC$ . The point $E$ lies on the line $AB$ is such that $BD= BE$ and $AD \perp DE$. Prove that the perpendicular bisectors to segments $AD, CD$ and $CE$ intersect at one point.

2019 European Mathematical Cup, 3

In an acute triangle $ABC$ with $|AB| \not= |AC|$, let $I$ be the incenter and $O$ the circumcenter. The incircle is tangent to $\overline{BC}, \overline{CA}$ and $\overline{AB}$ in $D,E$ and $F$ respectively. Prove that if the line parallel to $EF$ passing through $I$, the line parallel to $AO$ passing through $D$ and the altitude from $A$ are concurrent, then the point of concurrence is the orthocenter of the triangle $ABC$. [i]Proposed by Petar Nizié-Nikolac[/i]

2016 Sharygin Geometry Olympiad, P14

Let a triangle $ABC$ be given. Consider the circle touching its circumcircle at $A$ and touching externally its incircle at some point $A_1$. Points $B_1$ and $C_1$ are defined similarly. a) Prove that lines $AA_1, BB_1$ and $CC1$ concur. b) Let $A_2$ be the touching point of the incircle with $BC$. Prove that lines $AA_1$ and $AA_2$ are symmetric about the bisector of angle $\angle A$.

1967 IMO Shortlist, 6

A line $l$ is drawn through the intersection point $H$ of altitudes of acute-angle triangles. Prove that symmetric images $l_a, l_b, l_c$ of $l$ with respect to the sides $BC,CA,AB$ have one point in common, which lies on the circumcircle of $ABC.$

1984 IMO Longlists, 32

Angles of a given triangle $ABC$ are all smaller than $120^\circ$. Equilateral triangles $AFB, BDC$ and $CEA$ are constructed in the exterior of $ABC$. (a) Prove that the lines $AD, BE$, and $CF$ pass through one point $S.$ (b) Prove that $SD + SE + SF = 2(SA + SB + SC).$

2012 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be an arbitrary triangle, and let $M, N, P$ be any three points on the sides $BC, CA, AB$ such that the lines $AM, BN, CP$ concur. Let the parallel to the line $AB$ through the point $N$ meet the line $MP$ at a point $E$, and let the parallel to the line $AB$ through the point $M$ meet the line $NP$ at a point $F$. Then, the lines $CP, MN$ and $EF$ are concurrent. [hide=MOP 97 problem]Let $ABC$ be a triangle, and $M$, $N$, $P$ the points where its incircle touches the sides $BC$, $CA$, $AB$, respectively. The parallel to $AB$ through $N$ meets $MP$ at $E$, and the parallel to $AB$ through $M$ meets $NP$ at $F$. Prove that the lines $CP$, $MN$, $EF$ are concurrent. [url=https://artofproblemsolving.com/community/c6h22324p143462]also[/url][/hide]

1990 Romania Team Selection Test, 4

Let $M$ be a point on the edge $CD$ of a tetrahedron $ABCD$ such that the tetrahedra $ABCM$ and $ABDM$ have the same total areas. We denote by $\pi_{AB}$ the plane $ABM$. Planes $\pi_{AC},...,\pi_{CD}$ are analogously defined. Prove that the six planes $\pi_{AB},...,\pi_{CD}$ are concurrent in a certain point $N$, and show that $N$ is symmetric to the incenter $I$ with respect to the barycenter $G$.

2004 German National Olympiad, 2

Let $k$ be a circle with center $M.$ There is another circle $k_1$ whose center $M_1$ lies on $k,$ and we denote the line through $M$ and $M_1$ by $g.$ Let $T$ be a point on $k_1$ and inside $k.$ The tangent $t$ to $k_1$ at $T$ intersects $k$ in two points $A$ and $B.$ Denote the tangents (diifferent from $t$) to $k_1$ passing through $A$ and $B$ by $a$ and $b$, respectively. Prove that the lines $a,b,$ and $g$ are either concurrent or parallel.

1956 Moscow Mathematical Olympiad, 328

In a convex quadrilateral $ABCD$, consider quadrilateral $KLMN$ formed by the centers of mass of triangles $ABC, BCD, DBA, CDA$. Prove that the straight lines connecting the midpoints of the opposite sides of quadrilateral $ABCD$ meet at the same point as the straight lines connecting the midpoints of the opposite sides of $KLMN$.

2013 Junior Balkan Team Selection Tests - Moldova, 3

The point $O$ is the center of the circle circumscribed of the acute triangle $ABC$, and $H$ is the point of intersection of the heights of this triangle. Let $A_1, B_1, C_1$ be the points diametrically opposed to the vertices $A, B , C$ respectively of the triangle, and $A_2, B_2, C_2$ be the midpoints of the segments $[AH], [BH] ¸[CH]$ respectively . Prove that the lines $A_1A_2, B_1B_2, C_1C_2$ are concurrent .

2023 Yasinsky Geometry Olympiad, 3

Let $ABC$ be an acute triangle. Squares $AA_1A_2A_3$, $BB_1B_2B_3$ and $CC_1C_2C_3$ are located such that the lines $A_1A_2$, $B_1B_2$, $C_1C_2$ pass through the points $B$, $C$ and $A$ respectively and the lines $A_2A_3$, $B_2B_3$, $C_2C_3$ pass through the points $C$, $A$ and $B$ respectively. Prove that (a) the lines $AA_2$, $B_1B_2$ and $C_1C_3$ intersect at one point. (b) the lines $AA_2$, $BB_2$ and $CC_2$ intersect at one point. (Mykhailo Plotnikov) [img]https://cdn.artofproblemsolving.com/attachments/3/d/ad2fe12ae2c82d04b48f5e683b7d54e0764baf.png[/img]

2012 Oral Moscow Geometry Olympiad, 3

$H$ is the intersection point of the heights $AA'$ and $BB'$ of the acute-angled triangle $ABC$. A straight line, perpendicular to $AB$, intersects these heights at points $D$ and $E$, and side $AB$ at point $P$. Prove that the orthocenter of the triangle $DEH$ lies on segment $CP$.

2005 IMO, 1

Six points are chosen on the sides of an equilateral triangle $ABC$: $A_1$, $A_2$ on $BC$, $B_1$, $B_2$ on $CA$ and $C_1$, $C_2$ on $AB$, such that they are the vertices of a convex hexagon $A_1A_2B_1B_2C_1C_2$ with equal side lengths. Prove that the lines $A_1B_2$, $B_1C_2$ and $C_1A_2$ are concurrent. [i]Bogdan Enescu, Romania[/i]

1985 IMO Longlists, 31

Let $E_1, E_2$, and $E_3$ be three mutually intersecting ellipses, all in the same plane. Their foci are respectively $F_2, F_3; F_3, F_1$; and $F_1, F_2$. The three foci are not on a straight line. Prove that the common chords of each pair of ellipses are concurrent.

2016 Switzerland - Final Round, 5

Let $ABC$ be a right triangle with $\angle ACB = 90^o$ and M the center of $AB$. Let $G$ br any point on the line $MC$ and $P$ a point on the line $AG$, such that $\angle CPA = \angle BAC$ . Further let $Q$ be a point on the straight line $BG$, such that $\angle BQC = \angle CBA$ . Show that the circles of the triangles $AQG$ and $BPG$ intersect on the segment $AB$.

Geometry Mathley 2011-12, 13.3

Let $ABCD$ be a quadrilateral inscribed in circle $(O)$. Let $M,N$ be the midpoints of $AD,BC$. A line through the intersection $P$ of the two diagonals $AC,BD$ meets $AD,BC$ at $S, T$ respectively. Let $BS$ meet $AT$ at $Q$. Prove that three lines $AD,BC,PQ$ are concurrent if and only if $M, S, T,N$ are on the same circle. Đỗ Thanh Sơn

2020 Canadian Mathematical Olympiad Qualification, 6

In convex pentagon $ABCDE, AC$ is parallel to $DE, AB$ is perpendicular to $AE$, and $BC$ is perpendicular to $CD$. If $H$ is the orthocentre of triangle $ABC$ and $M$ is the midpoint of segment $DE$, prove that $AD, CE$ and $HM$ are concurrent.

2020 Yasinsky Geometry Olympiad, 6

In an isosceles triangle $ABC, I$ is the center of the inscribed circle, $M_1$ is the midpoint of the side $BC, K_2, K_3$ are the points of contact of the inscribed circle of the triangle with segments $AC$ and $AB$, respectively. The point $P$ lies on the circumcircle of the triangle $BCI$, and the angle $M_1PI$ is right. Prove that the lines $BC, PI, K_2K_3$ intersect at one point. (Mikhail Plotnikov)

Kyiv City MO Seniors Round2 2010+ geometry, 2013.11.4

Let $ H $ be the intersection point of the altitudes $ AP $ and $ CQ $ of the acute-angled triangle $ ABC $. On its median $ BM $ marked points $ E $ and $ F $ so that $ \angle APE = \angle BAC $ and $ \angle CQF = \angle BCA $, and the point $ E $ lies inside the triangle $ APB $, and the point $ F $ lies inside the triangle $ CQB $. Prove that the lines $ AE $, $ CF $ and $ BH $ intersect at one point. (Vyacheslav Yasinsky)

Indonesia MO Shortlist - geometry, g4

Given an acute triangle $ABC$ with $AB <AC$. Points $P$ and $Q$ lie on the angle bisector of $\angle BAC$ so that $BP$ and $CQ$ are perpendicular on that angle bisector. Suppose that point $E, F$ lie respectively at sides $AB$ and $AC$ respectively, in such a way that $AEPF$ is a kite. Prove that the lines $BC, PF$, and $QE$ intersect at one point.