Found problems: 257
2014 NZMOC Camp Selection Problems, 5
Let $ABC$ be an acute angled triangle. Let the altitude from $C$ to $AB$ meet $AB$ at $C'$ and have midpoint $M$, and let the altitude from $B$ to $AC$ meet $AC$ at $B'$ and have midpoint $N$. Let $P$ be the point of intersection of $AM$ and $BB'$ and $Q$ the point of intersection of $AN$ and $CC'$. Prove that the point $M, N, P$ and $Q$ lie on a circle.
Mathley 2014-15, 7
The circles $\gamma$ and $\delta$ are internally tangent to the circle $\omega$ at $A$ and $B$. From $A$, draw two tangent lines $\ell_1, \ell_2$ to $\delta$, . From $B$ draw two tangent lines $t_1, t_2$ to $\gamma$ . Let $\ell_1$ intersect $t_1$ at $X$ and $\ell_2$ intersect $t_2$ at $Y$ . Prove that the quadrilateral $AX BY$ is cyclic.
Nguyen Van Linh, High School of Natural Sciences, Hanoi National University
2019 Greece Junior Math Olympiad, 2
Let $ABCD$ be a quadrilateral inscribed in circle of center $O$. The perpendicular on the midpoint $E$ of side $BC$ intersects line $AB$ at point $Z$. The circumscribed circle of the triangle $CEZ$, intersects the side $AB$ for the second time at point $H$ and line $CD$ at point $G$ different than $D$. Line $EG$ intersects line $AD$ at point $K$ and line $CH$ at point $L$. Prove that the points $A,H,L,K$ are concyclic, e.g. lie on the same circle.
2019 Thailand Mathematical Olympiad, 1
Let $ABCDE$ be a convex pentagon with $\angle AEB=\angle BDC=90^o$ and line $AC$ bisects $\angle BAE$ and $\angle DCB$ internally. The circumcircle of $ABE$ intersects line $AC$ again at $P$.
(a) Show that $P$ is the circumcenter of $BDE$.
(b) Show that $A, C, D, E$ are concyclic.
Durer Math Competition CD Finals - geometry, 2023.C3
$ABC$ is an isosceles triangle. The base $BC$ is $1$ cm long, and legs $AB$ and $AC$ are $2$ cm long. Let the midpoint of $AB$ be $F$, and the midpoint of $AC$ be $G$. Additionally, $k$ is a circle, that is tangent to $AB$ and A$C$, and it’s points of tangency are $F$ and $G$ accordingly. Prove, that the intersection of $CF$ and $BG$ falls on the circle $k$.
2010 Puerto Rico Team Selection Test, 4
Let $ABC$ be an acute triangle such that $AB>BC>AC$. Let $D$ be a point different from $C$ on the segment $BC$, such that $AC=AD$. Let $H$ be the orthocenter of triangle $ABC$ and let $A_1$ and $B_1$ be the intersections of the heights from $A$ and $B$ to the opposite sides, respectively. Let $E$ be the intersection of the lines $A_1B_1$ and $DH$. Prove that $B$, $D$, $B_1$, $E$ are concyclic.
Ukraine Correspondence MO - geometry, 2008.11
Let $ABCD$ be a parallelogram. A circle with diameter $AC$ intersects line $BD$ at points $P$ and $Q$. The perpendicular on $AC$ passing through point $C$, intersects lines $AB$ and $AD$ at points $X$ and $Y$, respectively. Prove that the points $P, Q, X$ and $Y$ lie on the same circle.
2023 Iranian Geometry Olympiad, 1
We are given an acute triangle $ABC$. The angle bisector of $\angle BAC$ cuts $BC$ at $P$. Points $D$ and $E$ lie on segments $AB$ and $AC$, respectively, so that $BC \parallel DE$. Points $K$ and $L$ lie on segments $PD$ and $PE$, respectively, so that points $A$, $D$, $E$, $K$, $L$ are concyclic. Prove that points $B$, $C$, $K$, $L$ are also concyclic.
[i]Proposed by Patrik Bak, Slovakia [/i]
2015 Thailand Mathematical Olympiad, 4
Let $\vartriangle ABC$ be a triangle with an obtuse angle $\angle ACB$. The incircle of $\vartriangle ABC$ centered at $I$ is tangent to the sides $AB, BC, CA$ at $D, E, F$ respectively. Lines $AI$ and $BI$ intersect $EF$ at $M$ and $N$ respectively. Let $G$ be the midpoint of $AB$. Show that $M, N, G, D$ lie on a circle.
2019 Vietnam National Olympiad, Day 2
Let $ABC$ be an acute, nonisosceles triangle with inscribe in a circle $(O)$ and has orthocenter $H$. Denote $M,N,P$ as the midpoints of sides $BC,CA,AB$ and $D,E,F$ as the feet of the altitudes from vertices $A,B,C$ of triangle $ABC$. Let $K$ as the reflection of $H$ through $BC$. Two lines $DE,MP$ meet at $X$; two lines $DF,MN$ meet at $Y$.
a) The line $XY$ cut the minor arc $BC$ of $(O)$ at $Z$. Prove that $K,Z,E,F$ are concyclic.
b) Two lines $KE,KF$ cuts $(O)$ second time at $S,T$. Prove that $BS,CT,XY$ are concurrent.
Russian TST 2015, P2
Given an acute triangle $ABC, H$ is the foot of the altitude drawn from the point $A$ on the line $BC, P$ and $K \ne H$ are arbitrary points on the segments $AH$ and$ BC$ respectively. Segments $AC$ and $BP$ intersect at point $B_1$, lines $AB$ and $CP$ at point $C_1$. Let $X$ and $Y$ be the projections of point $H$ on the lines $KB_1$ and $KC_1$, respectively. Prove that points $A, P, X$ and $Y$ lie on one circle.
2018 Korea Winter Program Practice Test, 3
Denote $A_{DE}$ by the foot of perpendicular line from $A$ to line $DE$. Given concyclic points $A,B,C,D,E,F$, show that the three points determined by the lines $A_{FD}A_{DE}$ , $B_{DE}B_{EF}$ , $C_{EF}C_{FD}$, and the three points determined by the lines $D_{CA}D_{AB}$ , $E_{AB}E_{BC}$ , $F_{BC}F_{CA}$ are concyclic.
Geometry Mathley 2011-12, 8.3
Let $ABC$ be a scalene triangle, $(O)$ and $H$ be the circumcircle and its orthocenter. A line through $A$ is parallel to $OH$ meets $(O)$ at $K$. A line through $K$ is parallel to $AH$, intersecting $(O)$ again at $L$. A line through $L$ parallel to $OA$ meets $OH$ at $E$. Prove that $B,C,O,E$ are on the same circle.
Trần Quang Hùng
2024 German National Olympiad, 5
Let $\triangle ABC$ be a triangle and let $X$ be a point in the interior of the triangle. The second intersection points of the lines $XA,XB$ and $XC$ with the circumcircle of $\triangle ABC$ are $P,Q$ and $R$. Let $U$ be a point on the ray $XP$ (these are the points on the line $XP$ such that $P$ and $U$ lie on the same side of $X$). The line through $U$ parallel to $AB$ intersects $BQ$ in $V$ . The line through $U$ parallel to $AC$ intersects $CR$ in $W$. Prove that $Q, R, V$ , and $W$ lie on a circle.
2019 Polish MO Finals, 1
Let $ABC$ be an acute triangle. Points $X$ and $Y$ lie on the segments $AB$ and $AC$, respectively, such that $AX=AY$ and the segment $XY$ passes through the orthocenter of the triangle $ABC$. Lines tangent to the circumcircle of the triangle $AXY$ at points $X$ and $Y$ intersect at point $P$. Prove that points $A, B, C, P$ are concyclic.
2023 South East Mathematical Olympiad, 5
As shown in the figure, in $\vartriangle ABC$, $AB>AC$, the inscribed circle $I$ is tangent to the sides $BC$, $CA$, $AB$ at points $D$, $E$, $F$ respectively, and the straight lines $BC$ and $EF$ intersect at point $K$, $DG \perp EF$ at point $G$, ray $IG$ intersects the circumscribed circle of $\vartriangle ABC$ at point $H$. Prove that points $H$, $G$, $D$, $K$ lie on a circle.
[img]https://cdn.artofproblemsolving.com/attachments/5/e/804fb919e9c2f9cf612099e44bad9c75699b2e.png[/img]
Estonia Open Junior - geometry, 2000.2.4
In the plane, there is an acute angle $\angle AOB$ . Inside the angle points $C$ and $D$ are chosen so that $\angle AOC = \angle DOB$. From point $D$ the perpendicular on $OA$ intersects the ray $OC$ at point $G$ and from point C the perpendicular on $OB$ intersects the ray $OD$ at point $H$. Prove that the points $C, D, G$ and $H$ are conlyclic.
2019 Saudi Arabia BMO TST, 2
Let $I $be the incenter of triangle $ABC$and $J$ the excenter of the side $BC$: Let $M$ be the midpoint of $CB$ and $N$ the midpoint of arc $BAC$ of circle $(ABC)$. If $T$ is the symmetric of the point $N$ by the point $A$, prove that the quadrilateral $JMIT$ is cyclic
2020 Dutch BxMO TST, 2
In an acute-angled triangle $ABC, D$ is the foot of the altitude from $A$. Let $D_1$ and $D_2$ be the symmetric points of $D$ wrt $AB$ and $AC$, respectively. Let $E_1$ be the intersection of $BC$ and the line through $D_1$ parallel to $AB$ . Let $E_2$ be the intersection of$ BC$ and the line through $D_2$ parallel to $AC$. Prove that $D_1, D_2, E_1$ and $E_2$ on one circle whose center lies on the circumscribed circle of $\vartriangle ABC$.
2021 Sharygin Geometry Olympiad, 8.6
Let $ABC$ be an acute-angled triangle. Point $P$ is such that $AP = AB$ and $PB\parallel AC$. Point $Q$ is such that $AQ = AC$ and $CQ\parallel AB$. Segments $CP$ and $BQ$ meet at point $X$. Prove that the circumcenter of triangle $ABC$ lies on the circle $(PXQ)$.
2016 All-Russian Olympiad, 2
$\omega$ is a circle inside angle $\measuredangle BAC$ and it is tangent to sides of this angle at $B,C$.An arbitrary line $ \ell $ intersects with $AB,AC$ at $K,L$,respectively and intersect with $\omega$ at $P,Q$.Points $S,T$ are on $BC$ such that $KS \parallel AC$ and $TL \parallel AB$.Prove that $P,Q,S,T$ are concyclic.(I.Bogdanov,P.Kozhevnikov)
2019 Brazil EGMO TST, 3
Let $ABC$ be a triangle and $E$ and $F$ two arbitrary points on sides $AB$ and $AC$, respectively. The circumcircle of triangle $AEF$ meets the circumcircle of triangle $ABC$ again at point $M$. The point $D$ is such that $EF$ bisects the segment $MD$ . Finally, $O$ is the circumcenter of triangle $ABC$. Prove that $D$ lies on line $BC$ if and only if $O$ lies on the circumcircle of triangle $AEF$.
2021 Sharygin Geometry Olympiad, 10-11.3
The bisector of angle $A$ of triangle $ABC$ ($AB > AC$) meets its circumcircle at point $P$. The perpendicular to $AC$ from $C$ meets the bisector of angle $A$ at point $K$. A cừcle with center $P$ and radius $PK$ meets the minor arc $PA$ of the circumcircle at point $D$. Prove that the quadrilateral $ABDC$ is circumscribed.
2015 Hanoi Open Mathematics Competitions, 10
A right-angled triangle has property that, when a square is drawn externally on each side of the triangle, the six vertices of the squares that are not vertices of the triangle are concyclic. Assume that the area of the triangle is $9$ cm$^2$. Determine the length of sides of the triangle.
2022 Oral Moscow Geometry Olympiad, 2
In an acute triangle $ABC$,$O$ is the center of the circumscribed circle $\omega$, $P$ is the point of intersection of the tangents to $\omega$ through the points $B$ and $C$, the median AM intersects the circle $\omega$ at point $D$. Prove that points $A, D, P$ and $O$ lie on the same circle.
(D. Prokopenko)