This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 45

1965 IMO, 6

In a plane a set of $n\geq 3$ points is given. Each pair of points is connected by a segment. Let $d$ be the length of the longest of these segments. We define a diameter of the set to be any connecting segment of length $d$. Prove that the number of diameters of the given set is at most $n$.

2022 Indonesia TST, G

Let $AB$ be the diameter of circle $\Gamma$ centred at $O$. Point $C$ lies on ray $\overrightarrow{AB}$. The line through $C$ cuts circle $\Gamma$ at $D$ and $E$, with point $D$ being closer to $C$ than $E$ is. $OF$ is the diameter of the circumcircle of triangle $BOD$. Next, construct $CF$, cutting the circumcircle of triangle $BOD$ at $G$. Prove that $O,A,E,G$ are concyclic. (Possibly proposed by Pak Wono)

2014 Rioplatense Mathematical Olympiad, Level 3, 5

In the segment $A C$ a point $B$ is taken. Construct circles $T_1, T_2$ and $T_3$ of diameters $A B, BC$ and $AC$ respectively. A line that passes through $B$ cuts $T_3$ in the points $P$ and $Q$, and the circles $T_1$ and $T_2$ respectively at points $R$ and $S$. Prove that $PR = Q S$.

2020 OMMock - Mexico National Olympiad Mock Exam, 4

Let $ABC$ be a triangle. Suppose that the perpendicular bisector of $BC$ meets the circle of diameter $AB$ at a point $D$ at the opposite side of $BC$ with respect to $A$, and meets the circle through $A, C, D$ again at $E$. Prove that $\angle ACE=\angle BCD$. [i]Proposed by José Manuel Guerra and Victor Domínguez[/i]

2005 Bosnia and Herzegovina Team Selection Test, 4

On the line which contains diameter $PQ$ of circle $k(S,r)$, point $A$ is chosen outside the circle such that tangent $t$ from point $A$ touches the circle in point $T$. Tangents on circle $k$ in points $P$ and $Q$ are $p$ and $q$, respectively. If $PT \cap q={N}$ and $QT \cap p={M}$, prove that points $A$, $M$ and $N$ are collinear.

1965 IMO Shortlist, 6

In a plane a set of $n\geq 3$ points is given. Each pair of points is connected by a segment. Let $d$ be the length of the longest of these segments. We define a diameter of the set to be any connecting segment of length $d$. Prove that the number of diameters of the given set is at most $n$.

Brazil L2 Finals (OBM) - geometry, 2003.3

The triangle $ABC$ is inscribed in the circle $S$ and $AB <AC$. The line containing $A$ and is perpendicular to $BC$ meets $S$ in $P$ ($P \ne A$). Point $X$ is on the segment $AC$ and the line $BX$ intersects $S$ in $Q$ ($Q \ne B$). Show that $BX = CX$ if, and only if, $PQ$ is a diameter of $S$.

2015 Swedish Mathematical Competition, 1

Given the acute triangle $ABC$. A diameter of the circumscribed circle of the triangle intersects the sides $AC$ and $BC$, dividing the side $BC$ in half. Show that the same diameter divides the side $AC$ in a ratio of $1: 3$, calculated from $A$, if and only if $\tan B = 2 \tan C$.

Kyiv City MO 1984-93 - geometry, 1993.8.4

Tags: geometry , sum , diameter
The diameter of a circle of radius $R$ is divided into $4$ equal parts. The point $M$ is taken on the circle. Prove that the sum of the squares of the distances from the point $M$ to the points of division (together with the ends of the diameter) does not depend on the choice of the point $M$. Calculate this sum.

1984 IMO Shortlist, 14

Let $ABCD$ be a convex quadrilateral with the line $CD$ being tangent to the circle on diameter $AB$. Prove that the line $AB$ is tangent to the circle on diameter $CD$ if and only if the lines $BC$ and $AD$ are parallel.

1970 Vietnam National Olympiad, 4

$AB$ and $CD$ are perpendicular diameters of a circle. $L$ is the tangent to the circle at $A$. $M$ is a variable point on the minor arc $AC$. The ray $BM, DM$ meet the line $L$ at $P$ and $Q$ respectively. Show that $AP\cdot AQ = AB\cdot PQ$. Show how to construct the point $M$ which gives$ BQ$ parallel to $DP$. If the lines $OP$ and $BQ$ meet at $N$ find the locus of $N$. The lines $BP$ and $BQ$ meet the tangent at $D$ at $P'$ and $Q'$ respectively. Find the relation between $P'$ and $Q$'. The lines $D$P and $DQ$ meet the line $BC$ at $P"$ and $Q"$ respectively. Find the relation between $P"$ and $Q"$.

2015 China Northern MO, 2

It is known that $\odot O$ is the circumcircle of $\vartriangle ABC$ wwith diameter $AB$. The tangents of $\odot O$ at points $B$ and $C$ intersect at $P$ . The line perpendicular to $PA$ at point $A$ intersects the extension of $BC$ at point $D$. Extend $DP$ at length $PE = PB$. If $\angle ADP = 40^o$ , find the measure of $\angle E$.

Cono Sur Shortlist - geometry, 2003.G2

The circles $C_1, C_2$ and $C_3$ are externally tangent in pairs (each tangent to other two externally). Let $M$ the common point of $C_1$ and $C_2, N$ the common point of $C_2$ and $C_3$ and $P$ the common point of $C_3$ and $C_1$. Let $A$ be an arbitrary point of $C_1$. Line $AM$ cuts $C_2$ in $B$, line $BN$ cuts $C_3$ in $C$ and line $CP$ cuts $C_1$ in $D$. Prove that $AD$ is diameter of $C_1$.

1984 IMO, 1

Let $ABCD$ be a convex quadrilateral with the line $CD$ being tangent to the circle on diameter $AB$. Prove that the line $AB$ is tangent to the circle on diameter $CD$ if and only if the lines $BC$ and $AD$ are parallel.

2016 Romanian Master of Mathematics Shortlist, G1

Two circles, $\omega_1$ and $\omega_2$, centred at $O_1$ and $O_2$, respectively, meet at points $A$ and $B$. A line through $B$ meets $\omega_1$ again at $C$, and $\omega_2$ again at $D$. The tangents to $\omega_1$ and $\omega_2$ at $C$ and $D$, respectively, meet at $E$, and the line $AE$ meets the circle $\omega$ through $A, O_1, O_2$ again at $F$. Prove that the length of the segment $EF$ is equal to the diameter of $\omega$.

2005 Sharygin Geometry Olympiad, 11.4

In the triangle $ABC , \angle A = \alpha, BC = a$. The inscribed circle touches the lines $AB$ and $AC$ at points $M$ and $P$. Find the length of the chord cut by the line $MP$ in a circle with diameter $BC$.

1982 All Soviet Union Mathematical Olympiad, 333

$3k$ points are marked on the circumference. They divide it onto $3k$ arcs. Some $k$ of them have length $1$, other $k$ of them have length $2$, the rest $k$ of them have length $3$. Prove that some two of the marked points are the ends of one diameter.

Kyiv City MO Seniors 2003+ geometry, 2013.11.3

The segment $AB$ is the diameter of the circle. The points $M$ and $C$ belong to this circle and are located in different half-planes relative to the line $AB$. From the point $M$ the perpendiculars $MN$ and $MK$ are drawn on the lines $AB$ and $AC$, respectively. Prove that the line $KN$ intersects the segment $CM$ in its midpoint. (Igor Nagel)

2017 Finnish National High School Mathematics Comp, 5

Let $A$ and $B$ be two arbitrary points on the circumference of the circle such that $AB$ is not the diameter of the circle. The tangents to the circle drawn at points $A$ and $B$ meet at $T$. Next, choose the diameter $XY$ so that the segments $AX$ and $BY$ intersect. Let this be the intersection of $Q$. Prove that the points $A, B$, and $Q$ lie on a circle with center $T$.

2024 Yasinsky Geometry Olympiad, 3

Let \( H \) be the orthocenter of an acute triangle \( ABC \), and let \( AT \) be the diameter of the circumcircle of this triangle. Points \( X \) and \( Y \) are chosen on sides \( AC \) and \( AB \), respectively, such that \( TX = TY \) and \( \angle XTY + \angle XAY = 90^\circ \). Prove that \( \angle XHY = 90^\circ \). [i] Proposed by Matthew Kurskyi[/i]

1999 Tournament Of Towns, 4

$n$ diameters divide a disk into $2n$ equal sectors. $n$ of the sectors are coloured blue , and the other $n$ are coloured red (in arbitrary order) . Blue sectors are numbered from $1$ to $n$ in the anticlockwise direction, starting from an arbitrary blue sector, and red sectors are numbered from $1$ to $n$ in the clockwise direction, starting from an arbitrary red sector. Prove that there is a semi-disk containing sectors with all numbers from $1$ to $n$. (V Proizvolov)

Kyiv City MO Seniors Round2 2010+ geometry, 2017.10.3

Circles $w_1$ and $w_2$ with centers at points $O_1$ and $O_2$ respectively, intersect at points $A$ and $B$. A line passing through point $B$, intersects the circles $w_1$ and $w_2$ at points $C$ and $D$ other than $B$. Tangents to the circles $w_1$ and $w_2$ at points $C$ and $D$ intersect at point $E$. Line $EA$ intersects the circumscribed circle $w$ of triangle $AO_1O_2$ at point $F$. Prove that the length of the segment is $EF$ is equal to the diameter of the circle $w$. (Vovchenko V., Plotnikov M.)

1995 Singapore Team Selection Test, 2

Let $ABC$ be an acute-angled triangle. Suppose that the altitude of $\vartriangle ABC$ at $B$ intersects the circle with diameter $AC$ at $P$ and $Q$, and the altitude at $C$ intersects the circle with diameter $AB$ at $M$ and $N$. Prove that $P, Q, M$ and $N$ lie on a circle.

2019 Oral Moscow Geometry Olympiad, 1

In the triangle $ABC, I$ is the center of the inscribed circle, point $M$ lies on the side of $BC$, with $\angle BIM = 90^o$. Prove that the distance from point $M$ to line $AB$ is equal to the diameter of the circle inscribed in triangle $ABC$

2019 Swedish Mathematical Competition, 2

Segment $AB$ is the diameter of a circle. Points $C$ and $D$ lie on the circle. The rays $AC$ and $AD$ intersect the tangent to the circle at point $B$ at points $P$ and $Q$, respectively. Show that points $C, D, P$ and $Q$ lie on a circle.