Found problems: 361
Kyiv City MO Juniors Round2 2010+ geometry, 2018.8.31
On the sides $AB$, $BC$ and $CA$ of the isosceles triangle $ABC$ with the vertex at the point $B$ marked the points $M$, $D$ and $K$ respectively so that $AM = 2DC$ and $\angle AMD = \angle KDC$. Prove that $MD = KD$.
Durer Math Competition CD Finals - geometry, 2019.D3
a) Does there exist a quadrilateral with (both of) the following properties: three of its edges are of the same length, but the fourth one is different, and three of its angles are equal, but the fourth one is different?
b) Does there exist a pentagon with (both of) the following properties: four of its edges are of the same length, but the fifth one is different, and four of its angles are equal, but the fifth one is different?
2019 Estonia Team Selection Test, 7
An acute-angled triangle $ABC$ has two altitudes $BE$ and $CF$. The circle with diameter $AC$ intersects the segment $BE$ at point $P$. A circle with diameter $AB$ intersects the segment $CF$ at point $Q$ and the extension of this altitude at point $Q'$. Prove that $\angle PQ'Q = \angle PQB$.
2020 BMT Fall, 20
Non-degenerate quadrilateral $ABCD$ with $AB = AD$ and $BC = CD$ has integer side lengths, and $\angle ABC = \angle BCD = \angle CDA$. If $AB = 3$ and $B \ne D$, how many possible lengths are there for $BC$?
2022 Flanders Math Olympiad, 1
The points $A, B, C, D$ lie in that order on a circle. The segments $AC$ and $BD$ intersect at the point $P$. The point $B'$ lies on the line $AB$ such that $A$ is between $B$ and $B'$ and $|AB'| = |DP |$. The point $C'$ lies on the line $CD$ such that $D$ is between $C$ and $C'$ lies and $|DC' | = |AP|$. Prove that $\angle B'PC' = \angle ABD'$.
[img]https://cdn.artofproblemsolving.com/attachments/2/2/7ec65246ff5ecfebc25ca13f3709d1791ceb6c.png[/img]
=
2003 Junior Balkan Team Selection Tests - Romania, 2
Two circles $C_1(O_1)$ and $C_2(O_2)$ with distinct radii meet at points $A$ and $B$. The tangent from $A$ to $C_1$ intersects the tangent from $B$ to $C_2$ at point $M$. Show that both circles are seen from $M$ under the same angle.
2018 Puerto Rico Team Selection Test, 2
Let $ABC$ be an acute triangle and let $P,Q$ be points on $BC$ such that $\angle QAC =\angle ABC$ and $\angle PAB = \angle ACB$. We extend $AP$ to $M$ so that $ P$ is the midpoint of $AM$ and we extend $AQ$ to $N$ so that $Q$ is the midpoint of $AN$. If T is the intersection point of $BM$ and $CN$, show that quadrilateral $ABTC$ is cyclic.
Novosibirsk Oral Geo Oly IX, 2016.1
In the quadrilateral $ABCD$, angles $B$ and $C$ are equal to $120^o$, $AB = CD = 1$, $CB = 4$. Find the length $AD$.
2015 Romania National Olympiad, 3
In the convex quadrilateral $ABCD$ we have that $\angle BCD = \angle ADC \ge 90 ^o$. The bisectors of $\angle BAD$ and $\angle ABC$ intersect in $M$. Prove that if $M \in CD$, then $M$ is the middle of $CD$.
2018 JBMO Shortlist, G2
Let $ABC$ be a right angled triangle with $\angle A = 90^o$ and $AD$ its altitude. We draw parallel lines from $D$ to the vertical sides of the triangle and we call $E, Z$ their points of intersection with $AB$ and $AC$ respectively. The parallel line from $C$ to $EZ$ intersects the line $AB$ at the point $N$. Let $A' $ be the symmetric of $A$ with respect to the line $EZ$ and $I, K$ the projections of $A'$ onto $AB$ and $AC$ respectively. If $T$ is the point of intersection of the lines $IK$ and $DE$, prove that $\angle NA'T = \angle ADT$.
Kyiv City MO Juniors Round2 2010+ geometry, 2015.8.41
On the sides $AB, \, \, BC, \, \, CA$ of the triangle $ABC$ the points ${{C} _ {1}}, \, \, {{A} _ { 1}},\, \, {{B} _ {1}}$ are selected respectively, that are different from the vertices. It turned out that $\Delta {{A} _ {1}} {{B} _ {1}} {{C} _ {1}}$ is equilateral, $\angle B{{C}_{1}}{{A}_{1}}=\angle {{C}_{1}}{{B}_{1}}A$ and $\angle B{{A}_{1}}{{C}_{1}}=\angle {{A}_{1}}{{B}_{1}}C$ . Is $ \Delta ABC$ equilateral?
2013 Switzerland - Final Round, 7
Let $O$ be the center of the circle of the triangle $ABC$ with $AB \ne AC$. Furthermore, let $S$ and $T$ be points on the rays $AB$ and $AC$, such that $\angle ASO = \angle ACO$ and $\angle ATO = \angle ABO$. Show that $ST$ bisects the segment $BC$.
Geometry Mathley 2011-12, 11.3
Let $ABC$ be a triangle such that $AB = AC$ and let $M$ be a point interior to the triangle. If $BM$ meets $AC$ at $D$. show that $\frac{DM}{DA}=\frac{AM}{AB}$ if and only if $\angle AMB = 2\angle ABC$.
Michel Bataille
2020 Ukrainian Geometry Olympiad - April, 4
On the sides $AB$ and $AD$ of the square $ABCD$, the points $N$ and $P$ are selected respectively such that $NC=NP$. The point $Q$ is chosen on the segment $AN$ so that $\angle QPN = \angle NCB$. Prove that $2\angle BCQ = \angle AQP$.
2022 Dutch BxMO TST, 2
Let $ABC$ be an acute triangle, and let $D$ be the foot of the altitude from $A$. The circle with centre $A$ passing through $D$ intersects the circumcircle of triangle $ABC$ in $X$ and $Y$ , in such a way that the order of the points on this circumcircle is: $A, X, B, C, Y$ . Show that $\angle BXD = \angle CYD$.
Novosibirsk Oral Geo Oly IX, 2020.6
In triangle $ABC$, point $M$ is the midpoint of $BC$, $P$ the point of intersection of the tangents at points $B$ and $C$ of the circumscribed circle of $ABC$, $N$ is the midpoint of the segment $MP$. The segment $AN$ meets the circumcircle $ABC$ at the point $Q$. Prove that $\angle PMQ = \angle MAQ$.
2015 Dutch IMO TST, 1
In a quadrilateral $ABCD$ we have $\angle A = \angle C = 90^o$. Let $E$ be a point in the interior of $ABCD$. Let $M$ be the midpoint of $BE$. Prove that $\angle ADB = \angle EDC$ if and only if $|MA| = |MC|$.
1999 Poland - Second Round, 4
Let $P$ be a point inside a triangle $ABC$ such that $\angle PAB = \angle PCA$ and $\angle PAC =
\angle PBA$.
If $O \ne P$ is the circumcenter of $\triangle ABC$, prove that $\angle APO$ is right.
Kyiv City MO Seniors 2003+ geometry, 2020.10.5.1
Let $\Gamma$ be a semicircle with diameter $AB$. On this diameter is selected a point $C$, and on the semicircle are selected points $D$ and $E$ so that $E$ lies between $B$ and $D$. It turned out that $\angle ACD = \angle ECB$. The intersection point of the tangents to $\Gamma$ at points $D$ and $E$ is denoted by $F$. Prove that $\angle EFD=\angle ACD+ \angle ECB$.
Cono Sur Shortlist - geometry, 2021.G5
Let $\vartriangle ABC$ be a triangle with circumcenter $O$, orthocenter $H$, and circumcircle $\omega$. $AA'$, $BB'$ and $CC'$ are altitudes of $\vartriangle ABC$ with $A'$ in $BC$, $B'$ in $AC$ and $C'$ in $AB$. $P$ is a point on the segment $AA'$. The perpenicular line to $B'C'$ from $P$ intersects $BC$ at $K$. $AA'$ intersects $\omega$ at $M \ne A$. The lines $MK$ and $AO$ intersect at $Q$. Prove that $\angle CBQ = \angle PBA$.
2019 Junior Balkan Team Selection Tests - Romania, 3
In the acute triangle $ABC$ point $I$ is the incenter, $O$ is the circumcenter, while $I_a$ is the excenter opposite the vertex $A$. Point $A'$ is the reflection of $A$ across the line $BC$. Prove that angles $\angle IOI_a$ and $\angle IA'I_a$ are equal.
2016 Switzerland - Final Round, 5
Let $ABC$ be a right triangle with $\angle ACB = 90^o$ and M the center of $AB$. Let $G$ br any point on the line $MC$ and $P$ a point on the line $AG$, such that $\angle CPA = \angle BAC$ . Further let $Q$ be a point on the straight line $BG$, such that $\angle BQC = \angle CBA$ . Show that the circles of the triangles $AQG$ and $BPG$ intersect on the segment $AB$.
Denmark (Mohr) - geometry, 2012.5
In the hexagon $ABCDEF$, all angles are equally large. The side lengths satisfy $AB = CD = EF = 3$ and $BC = DE = F A = 2$. The diagonals $AD$ and $CF$ intersect each other in the point $G$. The point $H$ lies on the side $CD$ so that $DH = 1$. Prove that triangle $EGH$ is equilateral.
Kyiv City MO Seniors Round2 2010+ geometry, 2013.11.4
Let $ H $ be the intersection point of the altitudes $ AP $ and $ CQ $ of the acute-angled triangle $ ABC $. On its median $ BM $ marked points $ E $ and $ F $ so that $ \angle APE = \angle BAC $ and $ \angle CQF = \angle BCA $, and the point $ E $ lies inside the triangle $ APB $, and the point $ F $ lies inside the triangle $ CQB $. Prove that the lines $ AE $, $ CF $ and $ BH $ intersect at one point.
(Vyacheslav Yasinsky)
2008 Postal Coaching, 5
A convex quadrilateral $ABCD$ is given. There rays $BA$ and $CD$ meet in $P$, and the rays $BC$ and $AD$ meet in $Q$. Let $H$ be the projection of $D$ on $PQ$. Prove that $ABCD$ is cyclic if and only if the angle between the rays beginning at $H$ and tangent to the incircle of triangle $ADP$ is equal to the angle between the rays beginning at $H$ and tangent to the incircle of triangle $CDQ$. Also find out whether $ABCD$ is inscribable or circumscribable and justify.