This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 509

2014 Contests, 2 juniors

Let $ABCD$ be a parallelogram with an acute angle at $A$. Let $G$ be a point on the line $AB$, distinct from $B$, such that $|CG| = |CB|$. Let $H$ be a point on the line $BC$, distinct from $B$, such that $|AB| =|AH|$. Prove that triangle $DGH$ is isosceles. [asy] unitsize(1.5 cm); pair A, B, C, D, G, H; A = (0,0); B = (2,0); D = (0.5,1.5); C = B + D - A; G = reflect(A,B)*(C) + C - B; H = reflect(B,C)*(H) + A - B; draw(H--A--D--C--G); draw(interp(A,G,-0.1)--interp(A,G,1.1)); draw(interp(C,H,-0.1)--interp(C,H,1.1)); draw(D--G--H--cycle, dashed); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, E); dot("$D$", D, NW); dot("$G$", G, NE); dot("$H$", H, SE); [/asy]

2019 Saudi Arabia JBMO TST, 2

In triangle $ABC$ point $M$ is the midpoint of side $AB$, and point $D$ is the foot of altitude $CD$. Prove that $\angle A = 2\angle B$ if and only if $AC = 2MD$

Kyiv City MO Juniors 2003+ geometry, 2016.9.5

On the sides $BC$ and $AB$ of the triangle $ABC$ the points ${{A} _ {1}}$ and ${{C} _ {1}} $ are selected accordingly so that the segments $A {{A} _ {1}}$ and $C {{C} _ {1}}$ are equal and perpendicular. Prove that if $\angle ABC = 45 {} ^ \circ$, then $AC = A {{A} _ {1}} $. (Gogolev Andrew)

1975 Swedish Mathematical Competition, 4

$P_1$, $P_2$, $P_3$, $Q_1$, $Q_2$, $Q_3$ are distinct points in the plane. The distances $P_1Q_1$, $P_2Q_2$, $P_3Q_3$ are equal. $P_1P_2$ and $Q_2Q_1$ are parallel (not antiparallel), similarly $P_1P_3$ and $Q_3Q_1$, and $P_2P_3$ and $Q_3Q_2$. Show that $P_1Q_1$, $P_2Q_2$ and $P_3Q_3$ intersect in a point.

2015 BMT Spring, 7

$X_1, X_2, . . . , X_{2015}$ are $2015$ points in the plane such that for all $1 \le i, j \le 2015$, the line segment $X_iX_{i+1} = X_jX_{j+1}$ and angle $\angle X_iX_{i+1}X_{i+2} = \angle X_jX_{j+1}X_{j+2}$ (with cyclic indices such that $X_{2016} = X_1$ and $X_{2017} = X_2$). Given fixed $X_1$ and $X_2$, determine the number of possible locations for $X_3$.

VMEO IV 2015, 12.3

Triangle $ABC$ is inscribed in circle $(O)$. $ P$ is a point on arc $BC$ that does not contain $ A$ such that $AP$ is the symmedian of triangle $ABC$. $E ,F$ are symmetric of $P$ wrt $CA, AB$ respectively . $K$ is symmetric of $A$ wrt $EF$. $L$ is the projection of $K$ on the line passing through $A$ and parallel to $BC$. Prove that $PA=PL$.

1969 Dutch Mathematical Olympiad, 3

Given a quadrilateral $ABCD$ with $AB = BD = DC$ and $AC = BC$. On $BC$ lies point $E$ such that $AE = AB$. Prove that $ED = EB$.

2003 Oral Moscow Geometry Olympiad, 2

In a convex quadrilateral $ABCD$, $\angle ABC = 90^o$ , $\angle BAC = \angle CAD$, $AC = AD, DH$ is the alltitude of the triangle $ACD$. In what ratio does the line $BH$ divide the segment $CD$?

2013 Denmark MO - Mohr Contest, 5

The angle bisector of $A$ in triangle $ABC$ intersects $BC$ in the point $D$. The point $E$ lies on the side $AC$, and the lines $AD$ and $BE$ intersect in the point $F$. Furthermore, $\frac{|AF|}{|F D|}= 3$ and $\frac{|BF|}{|F E|}=\frac{5}{3}$. Prove that $|AB| = |AC|$. [img]https://1.bp.blogspot.com/-evofDCeJWPY/XzT9dmxXzVI/AAAAAAAAMVY/ZN87X3Cg8iMiULwvMhgFrXbdd_f1f-JWwCLcBGAsYHQ/s0/2013%2BMohr%2Bp5.png[/img]

Swiss NMO - geometry, 2017.8

Let $ABC$ be an isosceles triangle with vertex $A$ and $AB> BC$. Let $k$ be the circle with center $A$ passsing through $B$ and $C$. Let $H$ be the second intersection of $k$ with the altitude of the triangle $ABC$ through $B$. Further let $G$ be the second intersection of $k$ with the median through $B$ in triangle $ABC$. Let $X$ be the intersection of the lines $AC$ and $GH$. Show that $C$ is the midpoint of $AX$.

2022 Sharygin Geometry Olympiad, 3

Let $CD$ be an altitude of right-angled triangle $ABC$ with $\angle C = 90$. Regular triangles$ AED$ and $CFD$ are such that $E$ lies on the same side from $AB$ as $C$, and $F$ lies on the same side from $CD$ as $B$. The line $EF$ meets $AC$ at $L$. Prove that $FL = CL + LD$

2018 Dutch IMO TST, 3

Let $ABC$ be an acute triangle, and let $D$ be the foot of the altitude through $A$. On $AD$, there are distinct points $E$ and $F$ such that $|AE| = |BE|$ and $|AF| =|CF|$. A point$ T \ne D$ satis es $\angle BTE = \angle CTF = 90^o$. Show that $|TA|^2 =|TB| \cdot |TC|$.

2013 Oral Moscow Geometry Olympiad, 4

Similar triangles $ABM, CBP, CDL$ and $ADK$ are built on the sides of the quadrilateral $ABCD$ with perpendicular diagonals in the outer side (the neighboring ones are oriented differently). Prove that $PK = ML$.

2013 District Olympiad, 4

Consider the square $ABCD$ and the point $E$ inside the angle $CAB$, such that $\angle BAE =15^o$, and the lines $BE$ and $BD$ are perpendicular. Prove that $AE = BD$.

1996 Estonia National Olympiad, 2

Three sides of a trapezoid are equal, and a circle with the longer base as a diameter halves the two non-parallel sides. Find the angles of the trapezoid.

2006 Sharygin Geometry Olympiad, 15

A circle is circumscribed around triangle $ABC$ and a circle is inscribed in it, which touches the sides of the triangle $BC,CA,AB$ at points $A_1,B_1,C_1$, respectively. The line $B_1C_1$ intersects the line $BC$ at the point $P$, and $M$ is the midpoint of the segment $PA_1$. Prove that the segments of the tangents drawn from the point $M$ to the inscribed and circumscribed circle are equal.

2014 Estonia Team Selection Test, 4

In an acute triangle the feet of altitudes drawn from vertices $A$ and $B$ are $D$ and $E$, respectively. Let $M$ be the midpoint of side $AB$. Line $CM$ intersects the circumcircle of $CDE$ again in point $P$ and the circumcircle of $CAB$ again in point $Q$. Prove that $|MP| = |MQ|$.

1980 Austrian-Polish Competition, 9

Through the endpoints $A$ and $B$ of a diameter $AB$ of a given circle, the tangents $\ell$ and $m$ have been drawn. Let $C\ne A$ be a point on $\ell$ and let $q_1,q_2$ be two rays from $C$. Ray $q_i$ cuts the circle in $D_i$ and $E_i$ with $D_i$ between $C$ and $E_i, i = 1,2$. Rays $AD_1,AD_2,AE_1,AE_2$ meet $m$ in the respective points $M_1,M_2,N_1,N_2$. Prove that $M_1M_2 = N_1N_2$.

2000 Tournament Of Towns, 3

In a triangle $ABC, AB = c, BC = a, CA = b$, and $a < b < c$. Points $B'$ and $A'$ are chosen on the rays $BC$ and $AC$ respectively so that $BB'= AA'= c$. Points $C''$ and $B''$ are chosen on the rays $CA$ and $BA$ so that $CC'' = BB'' = a$. Find the ratio of the segment $A'B'$ to the segment $C'' B''$. (R Zhenodarov)

2022 Austrian MO National Competition, 2

The points $A, B, C, D$ lie in this order on a circle with center $O$. Furthermore, the straight lines $AC$ and $BD$ should be perpendicular to each other. The base of the perpendicular from $O$ on $AB$ is $F$. Prove $CD = 2 OF$. [i](Karl Czakler)[/i]

2015 BMT Spring, 16

Five points $A, B, C, D$, and $E$ in three-dimensional Euclidean space have the property that $AB = BC = CD = DE = EA = 1$ and $\angle ABC = \angle BCD =\angle CDE = \angle DEA = 90^o$ . Find all possible $\cos(\angle EAB)$.

Novosibirsk Oral Geo Oly VII, 2021.3

Prove that in a triangle one of the sides is twice as large as the other if and only if a median and an angle bisector of this triangle are perpendicular

2021 Abels Math Contest (Norwegian MO) Final, 4b

The tangent at $C$ to the circumcircle of triangle $ABC$ intersects the line through $A$ and $B$ in a point $D$. Two distinct points $E$ and $F$ on the line through $B$ and $C$ satisfy $|BE| = |BF | =\frac{||CD|^2 - |BD|^2|}{|BC|}$. Show that either $|ED| = |CD|$ or $|FD| = |CD|$.

2013 Saudi Arabia GMO TST, 3

$ABC$ is a triangle, $H$ its orthocenter, $I$ its incenter, $O$ its circumcenter and $\omega$ its circumcircle. Line $CI$ intersects circle $\omega$ at point $D$ different from $C$. Assume that $AB = ID$ and $AH = OH$. Find the angles of triangle $ABC$.

2000 Kazakhstan National Olympiad, 2

Given a circle centered at $ O $ and two points $ A $ and $ B $ lying on it. $ A $ and $ B $ do not form a diameter. The point $ C $ is chosen on the circle so that the line $ AC $ divides the segment $ OB $ in half. Let lines $ AB $ and $ OC $ intersect at $ D $, and let lines $ BC $ and $ AO $ intersect at $ F $. Prove that $ AF = CD $.