This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 509

2008 Peru MO (ONEM), 3

$ABC$ is an acute triangle with $\angle ACB = 45^o$. Let $D$ and $E$ be points on the sides $BC$ and $AC$, respectively, such that $AB = AD = BE$. Let $M,N$ and $X$ be the midpoints of $BD, AE$ and $AB$, respectively. Let lines $AM$ and $BN$ intersect at point $P$. Show that lines $XP$ and $DE$ are perpendicular.

Kyiv City MO Juniors 2003+ geometry, 2019.8.3

In the triangle $ABC$ it is known that $2AC=AB$ and $\angle A = 2\angle B$. In this triangle draw the angle bisector $AL$, and mark point $M$, the midpoint of the side $AB$. It turned out that $CL = ML$. Prove that $\angle B= 30^o$. (Hilko Danilo)

2006 Thailand Mathematical Olympiad, 4

Let $P$ be a point outside a circle centered at $O$. From $P$, tangent lines are drawn to the circle, touching the circle at points $A$ and $B$. Ray $\overrightarrow{BO}$ is drawn intersecting the circle again at $C$ and intersecting ray $\overrightarrow{PA}$ at $Q$. If $3QA = 2AP$, what is the value of $\sin \angle CAQ$?

2007 Oral Moscow Geometry Olympiad, 4

The midpoints of the opposite sides of the hexagon are connected by segments. It turned out that the points of pairwise intersection of these segments form an equilateral triangle. Prove that the drawn segments are equal. (M. Volchkevich)

Denmark (Mohr) - geometry, 2006.5

We consider an acute triangle $ABC$. The altitude from $A$ is $AD$, the altitude from $D$ in triangle $ABD$ is $DE,$ and the altitude from $D$ in triangle $ACD$ is $DF$. a) Prove that the triangles $ABC$ and $AF E$ are similar. b) Prove that the segment $EF$ and the corresponding segments constructed from the vertices $B$ and $C$ all have the same length.

2022 Oral Moscow Geometry Olympiad, 3

In quadrilateral $ABCD$, sides $AB$ and $CD$ are equal (but not parallel), points $M$ and $N$ are the midpoints of $AD$ and $BC$. The perpendicular bisector of $MN$ intersects sides $AB$ and $CD$ at points $P$ and $Q$, respectively. Prove that $AP = CQ$. (M. Kungozhin)

1994 Tournament Of Towns, (404) 2

Two circles intersect at the points $A$ and $B$. Tangent lines drawn to both of the circles at the point $A$ intersect the circles at the points $M$ and $N$. The lines $BM$ and $BN$ intersect the circles once more at the points $P$ and $Q$ respectively. Prove that the segments $MP$ and $NQ$ are equal. (I Nagel)

Kharkiv City MO Seniors - geometry, 2016.11.5

The circle $\omega$ passes through the vertices $B$ and $C$ of triangle $ABC$ and intersects its sides $AC,AB$ at points $A,E$, respectively. On the ray $BD$, a point $K$ such that $BK = AC$ is chosen , and on the ray $CE$, a point $L$ such that $CL = AB$ is chosen. Prove that the center $O$ of the circumscribed circle of the triangle $AKL$ lies on the circle $\omega$.

Estonia Open Junior - geometry, 2008.2.2

In a right triangle $ABC$, $K$ is the midpoint of the hypotenuse $AB$ and $M$ such a point on the $BC$ that $| B M | = 2 | MC |$. Prove that $\angle MAB = \angle MKC$.

2024 Canadian Mathematical Olympiad Qualification, 7b

In triangle $ABC$, let $I$ be the incentre, $O$ be the circumcentre, and $H$ be the orthocentre. It is given that $IO = IH$. Show that one of the angles of triangle $ABC$ must be equal to $60$ degrees.

2009 Balkan MO Shortlist, G1

In the triangle $ABC, \angle BAC$ is acute, the angle bisector of $\angle BAC$ meets $BC$ at $D, K$ is the foot of the perpendicular from $B$ to $AC$, and $\angle ADB = 45^o$. Point $P$ lies between $K$ and $C$ such that $\angle KDP = 30^o$. Point $Q$ lies on the ray $DP$ such that $DQ = DK$. The perpendicular at $P$ to $AC$ meets $KD$ at $L$. Prove that $PL^2 = DQ \cdot PQ$.

1998 Estonia National Olympiad, 2

Let $S$ be the incenter of the triangle $ABC$ and let the line $AS$ intersect the circumcircle of triangle $ABC$ at point $D$ ($D\ne A$). Prove that the segments $BD, CD$ and $SD$ are of equal length.

2021 Sharygin Geometry Olympiad, 8.6

Let $ABC$ be an acute-angled triangle. Point $P$ is such that $AP = AB$ and $PB\parallel AC$. Point $Q$ is such that $AQ = AC$ and $CQ\parallel AB$. Segments $CP$ and $BQ$ meet at point $X$. Prove that the circumcenter of triangle $ABC$ lies on the circle $(PXQ)$.

Kyiv City MO Juniors 2003+ geometry, 2006.8.3

On the legs $AC, BC$ of a right triangle $\vartriangle ABC$ select points $M$ and $N$, respectively, so that $\angle MBC = \angle NAC$. The perpendiculars from points $M$ and $C$ on the line $AN$ intersect $AB$ at points $K$ and $L$, respectively. Prove that $KL=LB$. (O. Clurman)

Kyiv City MO Seniors 2003+ geometry, 2015.10.5

Circles ${{w} _ {1}}$ and ${{w} _ {2}}$ with centers at points ${{O} _ {1}}$ and ${{ O} _ {2}}$ intersect at points $A$ and $B$, respectively. Around the triangle ${{O} _ {1}} {{O} _ {2}} B$ circumscribe a circle $w$ centered at the point $O$, which intersects the circles ${{w } _ {1}}$ and ${{w} _ {2}}$ for the second time at points $K$ and $L$, respectively. The line $OA$ intersects the circles ${{w} _ {1}}$ and ${{w} _ {2}}$ at the points $M$ and $N$, respectively. The lines $MK$ and $NL$ intersect at the point $P$. Prove that the point $P$ lies on the circle $w$ and $PM = PN$. (Vadym Mitrofanov)

2020 China Team Selection Test, 2

Given an isosceles triangle $\triangle ABC$, $AB=AC$. A line passes through $M$, the midpoint of $BC$, and intersects segment $AB$ and ray $CA$ at $D$ and $E$, respectively. Let $F$ be a point of $ME$ such that $EF=DM$, and $K$ be a point on $MD$. Let $\Gamma_1$ be the circle passes through $B,D,K$ and $\Gamma_2$ be the circle passes through $C,E,K$. $\Gamma_1$ and $\Gamma_2$ intersect again at $L \neq K$. Let $\omega_1$ and $\omega_2$ be the circumcircle of $\triangle LDE$ and $\triangle LKM$. Prove that, if $\omega_1$ and $\omega_2$ are symmetric wrt $L$, then $BF$ is perpendicular to $BC$.

Novosibirsk Oral Geo Oly IX, 2023.3

An isosceles triangle $ABC$ with base $AC$ is given. On the rays $CA$, $AB$ and $BC$, the points $D, E$ and $F$ were marked, respectively, in such a way that $AD = AC$, $BE = BA$ and $CF = CB$. Find the sum of the angles $\angle ADB$, $\angle BEC$ and $\angle CFA$.

2019 Ukraine Team Selection Test, 1

In a triangle $ABC$, $\angle ABC= 60^o$, point $I$ is the incenter. Let the points $P$ and $T$ on the sides $AB$ and $BC$ respectively such that $PI \parallel BC$ and $TI \parallel AB$ , and points $P_1$ and $T_1$ on the sides $AB$ and $BC$ respectively such that $AP_1 = BP$ and $CT_1 = BT$. Prove that point $I$ lies on segment $P_1T_1$. (Anton Trygub)

Kyiv City MO Juniors 2003+ geometry, 2020.8.51

Let $ABCDEF$ be a hexagon inscribed in a circle in which $AB = BC, CD = DE$ and $EF = FA$. Prove that the lines $AD, BE$ and $CF$ intersect at one point.

Geometry Mathley 2011-12, 3.1

$AB,AC$ are tangent to a circle $(O)$, $B,C$ are the points of tangency. $Q$ is a point iside the angle $BAC$, on the ray $AQ$, take a point $P$ suc that $OP$ is perpendicular to $AQ$. The line $OP$ meets the circumcircles triangles $BPQ$ and $CPQ$ at $I, J$. Prove that $OI = OJ$. Hồ Quang Vinh

2011 Korea Junior Math Olympiad, 2

Let $ABCD$ be a cyclic quadrilateral inscirbed in circle $O$. Let the tangent to $O$ at $A$ meet $BC$ at $S$, and the tangent to $O$ at $B$ meet $CD$ at $T$. Circle with $S$ as its center and passing $A$ meets $BC$ at $E$, and $AE$ meets $O$ again at $F(\ne A)$. The circle with $T$ as its center and passing $B$ meets $CD$ at $K$. Let $P = BK \cap AC$. Prove that $P,F,D$ are collinear if and only if $AB = AP$.

2019 Regional Competition For Advanced Students, 2

The convex pentagon $ABCDE$ is cyclic and $AB = BD$. Let point $P$ be the intersection of the diagonals $AC$ and $BE$. Let the straight lines $BC$ and $DE$ intersect at point $Q$. Prove that the straight line $PQ$ is parallel to the diagonal $AD$.

2019 Saudi Arabia Pre-TST + Training Tests, 1.3

Let $ABCD$ be a trapezoid with $\angle A = \angle B = 90^o$ and a point $E$ lies on the segment $CD$. Denote $(\omega)$ as incircle of triangle $ABE$ and it is tangent to $AB,AE,BE$ respectively at $P, F,K$. Suppose that $KF$ cuts $BC,AD$ at $M,N$ and $PM,PN$ cut $(\omega)$ at $H, T$. Prove that $PH = PT$.

Novosibirsk Oral Geo Oly IX, 2016.6

An arbitrary point $M$ inside an equilateral triangle $ABC$ was connected to vertices. Prove that on each side the triangle can be selected one point at a time so that the distances between them would be equal to $AM, BM, CM$.

2004 Oral Moscow Geometry Olympiad, 5

The diagonals of the inscribed quadrilateral $ABCD$ meet at the point $M$, $\angle AMB = 60^o$. Equilateral triangles $ADK$ and $BCL$ are built outward on sides $AD$ and $BC$. Line $KL$ meets the circle circumscribed ariound $ABCD$ at points $P$ and $Q$. Prove that $PK = LQ$.