This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 296

1990 Tournament Of Towns, (277) 2

A point $M$ is chosen on the arc $AC$ of the circumcircle of the equilateral triangle $ABC$. $P$ is the midpoint of this arc, $N$ is the midpoint of the chord $BM$ and $K$ is the foot of the perpendicular drawn from $P$ to $MC$. Prove that the triangle $ANK$ is equilateral. (I Nagel, Yevpatoria)

2009 Danube Mathematical Competition, 3

Let $n$ be a natural number. Determine the minimal number of equilateral triangles of side $1$ to cover the surface of an equilateral triangle of side $n +\frac{1}{2n}$.

2018 Brazil EGMO TST, 3

An equilateral triangle $ABC$ is inscribed in a circle $\Omega$ and has incircle $\omega$. Points $P$ and $Q$ are in segments $AC$ and $AB$, respectively, such that $PQ$ is tangent to $\omega$. The circle $\Omega_B$ has center $P$ and radius $PB$ and the circle $\Omega_C$ is defined similarly. Prove that $\Omega$, $\Omega_B$ and $\Omega_C$ have a common point.

Kyiv City MO Juniors Round2 2010+ geometry, 2021.7.4

The sides of the triangle $ABC$ are extended in both directions and on these extensions $6$ equal segments $AA_1 , AA_2, BB_1,BB_2, CC_1, CC_2$ are drawn (fig.). It turned out that all $6$ points $A_1,A_2,B_1,B_2,C_1, C_2$ lie on the same circle, is $\vartriangle ABC$ necessarily equilateral? (Bogdan Rublev) [img]https://cdn.artofproblemsolving.com/attachments/0/3/a499f6e6d978ce63d2ab40460dc73b62882863.png[/img]

2006 Switzerland - Final Round, 2

Let $ABC$ be an equilateral triangle and let $D$ be an inner point of the side $BC$. A circle is tangent to $BC$ at $D$ and intersects the sides $AB$ and $AC$ in the inner points $M, N$ and $P, Q$ respectively. Prove that $|BD| + |AM| + |AN| = |CD| + |AP| + |AQ|$.

Denmark (Mohr) - geometry, 2015.3

Triangle $ABC$ is equilateral. The point $D$ lies on the extension of $AB$ beyond $B$, the point $E$ lies on the extension of $CB$ beyond $B$, and $|CD| = |DE|$. Prove that $|AD| = |BE|$. [img]https://1.bp.blogspot.com/-QnAXFw3ijn0/XzR0YjqBQ3I/AAAAAAAAMU0/0TvhMQtBNjolYHtgXsQo2OPGJzEYSfCwACLcBGAsYHQ/s0/2015%2BMohr%2Bp3.png[/img]

2000 Switzerland Team Selection Test, 3

An equilateral triangle of side $1$ is covered by five congruent equilateral triangles of side $s < 1$ with sides parallel to those of the larger triangle. Show that some four of these smaller triangles also cover the large triangle.

2013 India PRMO, 12

Let $ABC$ be an equilateral triangle. Let $P$ and $S$ be points on $AB$ and $AC$, respectively, and let $Q$ and $R$ be points on $BC$ such that $PQRS$ is a rectangle. If $PQ = \sqrt3 PS$ and the area of $PQRS$ is $28\sqrt3$, what is the length of $PC$?

Indonesia Regional MO OSP SMA - geometry, 2002.4

Given an equilateral triangle $ABC$ and a point $P$ so that the distances $P$ to $A$ and to $C$ are not farther than the distances $P$ to $B$. Prove that $PB = PA + PC$ if and only if $P$ lies on the circumcircle of $\vartriangle ABC$.

VII Soros Olympiad 2000 - 01, 8.4

Paint the maximum number of vertices of the cube red so that you cannot select three of the red vertices that form an equilateral triangle.

2000 May Olympiad, 4

There are pieces in the shape of an equilateral triangle with sides $1, 2, 3, 4, 5$ and $6$ ($50$ pieces of each size). You want to build an equilateral triangle of side $7$ using some of these pieces, without gaps or overlaps. What is the least number of pieces needed?

2017 BMT Spring, 13

$4$ equilateral triangles of side length $1$ are drawn on the interior of a unit square, each one of which shares a side with one of the $4$ sides of the unit square. What is the common area enclosed by all $4$ equilateral triangles?

1987 Tournament Of Towns, (148) 5

Perpendiculars are drawn from an interior point $M$ of the equilateral triangle $ABC$ to its sides , intersecting them at points $D, E$ and $F$ . Find the locus of all points $M$ such that $DEF$ is a right triangle . (J . Tabov , Sofia)

2009 Cuba MO, 2

Let $I$ be the incenter of an acute riangle $ABC$. Let $C_A(A, AI)$ be the circle with center $A$ and radius $AI$. Circles $C_B(B, BI)$, $C_C(C, CI) $ are defined in an analogous way. Let $X, Y, Z$ be the intersection points of $C_B$ with $C_C$, $C_C$ with $C_A$, $C_A$ with $C_B$ respectively (different than $I$) . Show that if the radius of the circle that passes through the points $X, Y, Z$ is equal to the radius of the circle that passes through points $A$, $B$ and $C$ then triangle $ABC$ is equilateral.

1999 Abels Math Contest (Norwegian MO), 3

An isosceles triangle $ABC$ with $AB = AC$ and $\angle A = 30^o$ is inscribed in a circle with center $O$. Point $D$ lies on the shorter arc $AC$ so that $\angle DOC = 30^o$, and point $G$ lies on the shorter arc $AB$ so that $DG = AC$ and $AG < BG$. The line $BG$ intersects $AC$ and $AB$ at $E$ and $F$, respectively. (a) Prove that triangle $AFG$ is equilateral. (b) Find the ratio between the areas of triangles $AFE$ and $ABC$.

2012 BAMO, 4

Given a segment $AB$ in the plane, choose on it a point $M$ different from $A$ and $B$. Two equilateral triangles $\triangle AMC$ and $\triangle BMD$ in the plane are constructed on the same side of segment $AB$. The circumcircles of the two triangles intersect in point $M$ and another point $N$. (The [b]circumcircle[/b] of a triangle is the circle that passes through all three of its vertices.) (a) Prove that lines $AD$ and $BC$ pass through point $N$. (b) Prove that no matter where one chooses the point $M$ along segment $AB$, all lines $MN$ will pass through some fixed point $K$ in the plane.

Kyiv City MO 1984-93 - geometry, 1991.8.3

On the sides of the parallelogram $ABCD$ outside it are constructed equilateral triangles $ABM$, $BCN$, $CDP$, $ADQ$. Prove that $MNPQ$ is a parallelogram.

2006 Sharygin Geometry Olympiad, 8.1

Inscribe the equilateral triangle of the largest perimeter in a given semicircle.

2015 Dutch IMO TST, 3

An equilateral triangle $ABC$ is given. On the line through $B$ parallel to $AC$ there is a point $D$, such that $D$ and $C$ are on the same side of the line $AB$. The perpendicular bisector of $CD$ intersects the line $AB$ in $E$. Prove that triangle $CDE$ is equilateral.

1996 Israel National Olympiad, 5

Suppose that the circumradius $R$ and the inradius $r$ of a triangle $ABC$ satisfy $R = 2r$. Prove that the triangle is equilateral.

1992 Chile National Olympiad, 4

Given three parallel lines, prove that there are three points, one on each line, which are the vertices of an equilateral triangle.

OIFMAT II 2012, 3

In the interior of an equilateral triangle $ ABC $ a point $ P $ is chosen such that $ PA ^2 = PB ^2 + PC ^2 $. Find the measure of $ \angle BPC $.

2006 Portugal MO, 2

In the equilateral triangle $[ABC], D$ is the midpoint of $[AC], E$ and the orthogonal projection of $D$ over $[CB]$ and $F$ is the midpoint of $[DE]$. Prove that $[FB]$ and $[AE]$ are perpendicular. [img]https://1.bp.blogspot.com/-TjSyQotGIOM/X4XMolaXHvI/AAAAAAAAMng/cVsHfl-lrXAFE5LMdosE6vqK1Tf-8WOQgCLcBGAsYHQ/s0/2006%2Bportugal%2Bp2.png[/img]

2019 District Olympiad, 4

Consider the isosceles right triangle$ ABC, \angle A = 90^o$, and point $D \in (AB)$ such that $AD = \frac13 AB$. In the half-plane determined by the line $AB$ and point $C$ , consider a point $E$ such that $\angle BDE = 60^o$ and $\angle DBE = 75^o$. Lines $BC$ and $DE$ intersect at point $G$, and the line passing through point $G$ parallel to the line $AC$ intersects the line $BE$ at point $H$. Prove that the triangle $CEH$ is equilateral.

2009 Junior Balkan Team Selection Tests - Romania, 3

The plane is divided into a net of equilateral triangles of side length $1$, with disjoint interiors. A checker is placed initialy inside a triangle. The checker can be moved into another triangle sharing a common vertex (with the triangle hosting the checker) and having the opposite sides (with respect to this vertex) parallel. A path consists in a finite sequence of moves. Prove that there is no path between two triangles sharing a common side.