This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 26

Geometry Mathley 2011-12, 4.4

Let $ABC$ be a triangle with $E$ being the centre of its Euler circle. Through $E$, construct the lines $PS, MQ, NR$ parallel to $BC,CA,AB$ ($R,Q$ are on the line $BC, N, P$ on the line $AC,M, S$ on the line $AB$). Prove that the four Euler lines of triangles $ABC,AMN,BSR,CPQ$ are concurrent. Nguyễn Văn Linh

2014 Sharygin Geometry Olympiad, 3

An acute angle $A$ and a point $E$ inside it are given. Construct points $B, C$ on the sides of the angle such that $E$ is the center of the Euler circle of triangle $ABC$. (E. Diomidov)

2017 Balkan MO Shortlist, G4

The acuteangled triangle $ABC$ with circumcenter $O$ is given. The midpoints of the sides $BC, CA$ and $AB$ are $D, E$ and $F$ respectively. An arbitrary point $M$ on the side $BC$, different of $D$, is choosen. The straight lines $AM$ and $EF$ intersects at the point $N$ and the straight line $ON$ cut again the circumscribed circle of the triangle $ODM$ at the point $P$. Prove that the reflection of the point $M$ with respect to the midpoint of the segment $DP$ belongs on the nine points circle of the triangle $ABC$.

2025 Sharygin Geometry Olympiad, 20

Let $H$ be the orthocenter of a triangle $ABC$, and $M$, $N$ be the midpoints of segments $BC$, $AH$ respectively. The perpendicular from $N$ to $MH$ meets $BC$ at point $A^{\prime}$. Points $B^{\prime}$ and $C^{\prime}$ are defined similarly. Prove that $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ are collinear. Proposed by: F.Ivlev

2011 Sharygin Geometry Olympiad, 23

Given are triangle $ABC$ and line $\ell$ intersecting $BC, CA$ and $AB$ at points $A_1, B_1$ and $C_1$ respectively. Point $A'$ is the midpoint of the segment between the projections of $A_1$ to $AB$ and $AC$. Points $B'$ and $C'$ are defined similarly. (a) Prove that $A', B'$ and $C'$ lie on some line $\ell'$. (b) Suppose $\ell$ passes through the circumcenter of $\triangle ABC$. Prove that in this case $\ell'$ passes through the center of its nine-points circle. [i]M. Marinov and N. Beluhov[/i]

2011 Sharygin Geometry Olympiad, 22

Let $CX, CY$ be the tangents from vertex $C$ of triangle $ABC$ to the circle passing through the midpoints of its sides. Prove that lines $XY , AB$ and the tangent to the circumcircle of $ABC$ at point $C$ concur.

2010 Bosnia And Herzegovina - Regional Olympiad, 4

Let $AA_1$, $BB_1$ and $CC_1$ be altitudes of triangle $ABC$ and let $A_1A_2$, $B_1B_2$ and $C_1C_2$ be diameters of Euler circle of triangle $ABC$. Prove that lines $AA_2$, $BB_2$ and $CC_2$ are concurrent

2022 China Team Selection Test, 2

Given a non-right triangle $ABC$ with $BC>AC>AB$. Two points $P_1 \neq P_2$ on the plane satisfy that, for $i=1,2$, if $AP_i, BP_i$ and $CP_i$ intersect the circumcircle of the triangle $ABC$ at $D_i, E_i$, and $F_i$, respectively, then $D_iE_i \perp D_iF_i$ and $D_iE_i = D_iF_i \neq 0$. Let the line $P_1P_2$ intersects the circumcircle of $ABC$ at $Q_1$ and $Q_2$. The Simson lines of $Q_1$, $Q_2$ with respect to $ABC$ intersect at $W$. Prove that $W$ lies on the nine-point circle of $ABC$.

2025 India STEMS Category A, 5

Let $ABC$ be an acute scalene triangle. Let $D, E$ be points on segments $AB, AC$ respectively, such that $BD=CE$. Prove that the nine-point centers of $ADE$, $ACD$, $ABC$, $AEB$ form a rhombus. [i]Proposed by Malay Mahajan and Siddharth Choppara[/i]

2006 Sharygin Geometry Olympiad, 9.2

Given a circle, point $A$ on it and point $M$ inside it. We consider the chords $BC$ passing through $M$. Prove that the circles passing through the midpoints of the sides of all the triangles $ABC$ are tangent to a fixed circle.

2025 India STEMS Category B, 5

Let $ABC$ be an acute scalene triangle. Let $D, E$ be points on segments $AB, AC$ respectively, such that $BD=CE$. Prove that the nine-point centers of $ADE$, $ACD$, $ABC$, $AEB$ form a rhombus. [i]Proposed by Malay Mahajan and Siddharth Choppara[/i]

Geometry Mathley 2011-12, 13.2

In a triangle $ABC$, the nine-point circle $(N)$ is tangent to the incircle $(I)$ and three excircles $(I_a), (I_b), (I_c)$ at the Feuerbach points $F, F_a, F_b, F_c$. Tangents of $(N)$ at $F, F_a, F_b, F_c$ bound a quadrangle $PQRS$. Show that the Euler line of $ABC$ is a Newton line of $PQRS$. Luis González

KoMaL A Problems 2022/2023, A. 853

Let points $A, B, C, A', B', C'$ be chosen in the plane such that no three of them are collinear, and let lines $AA'$, $BB'$ and $CC'$ be tangent to a given equilateral hyperbola at points $A$, $B$ and $C$, respectively. Assume that the circumcircle of $A'B'C'$ is the same as the nine-point circle of triangle $ABC$. Let $s(A')$ be the Simson line of point $A'$ with respect to the orthic triangle of $ABC$. Let $A^*$ be the intersection of line $B'C'$ and the perpendicular on $s(A')$ from the point $A$. Points $B^*$ and $C^*$ are defined in a similar manner. Prove that points $A^*$, $B^*$ and $C^*$ are collinear. [i]Submitted by Áron Bán-Szabó, Budapest[/i]

2015 Romania Team Selection Tests, 2

Let $ABC$ be a triangle . Let $A'$ be the center of the circle through the midpoint of the side $BC$ and the orthogonal projections of $B$ and $C$ on the lines of support of the internal bisectrices of the angles $ACB$ and $ABC$ , respectively ; the points $B'$ and $C'$ are defined similarly . Prove that the nine-point circle of the triangle $ABC$ and the circumcircle of $A'B'C'$ are concentric.

2016 Balkan MO, 2

Let $ABCD$ be a cyclic quadrilateral with $AB<CD$. The diagonals intersect at the point $F$ and lines $AD$ and $BC$ intersect at the point $E$. Let $K$ and $L$ be the orthogonal projections of $F$ onto lines $AD$ and $BC$ respectively, and let $M$, $S$ and $T$ be the midpoints of $EF$, $CF$ and $DF$ respectively. Prove that the second intersection point of the circumcircles of triangles $MKT$ and $MLS$ lies on the segment $CD$. [i](Greece - Silouanos Brazitikos)[/i]

2016 Irish Math Olympiad, 10

Let $AE$ be a diameter of the circumcircle of triangle $ABC$. Join $E$ to the orthocentre, $H$, of $\triangle ABC$ and extend $EH$ to meet the circle again at $D$. Prove that the nine point circle of $\triangle ABC$ passes through the midpoint of $HD$. Note. The nine point circle of a triangle is a circle that passes through the midpoints of the sides, the feet of the altitudes and the midpoints of the line segments that join the orthocentre to the vertices.

2019 Saudi Arabia Pre-TST + Training Tests, 2.3

Let $ABC$ be an acute, non isosceles triangle with $O,H$ are circumcenter and orthocenter, respectively. Prove that the nine-point circles of $AHO,BHO,CHO$ has two common points.

Geometry Mathley 2011-12, 14.4

Two triangles $ABC$ and $PQR$ have the same circumcircles. Let $E_a, E_b, E_c$ be the centers of the Euler circles of triangles $PBC, QCA, RAB$. Assume that $d_a$ is a line through $Ea$ parallel to $AP$, $d_b, d_c$ are defined in the same manner. Prove that three lines $d_a, d_b, d_c$ are concurrent. Nguyễn Tiến Lâm, Trần Quang Hùng

2023 Sharygin Geometry Olympiad, 7

Let $A$ be a fixed point of a circle $\omega$. Let $BC$ be an arbitrary chord of $\omega$ passing through a fixed point $P$. Prove that the nine-points circles of triangles $ABC$ touch some fixed circle not depending on $BC$.

2016 Balkan MO Shortlist, G2

Let $ABCD$ be a cyclic quadrilateral with $AB<CD$. The diagonals intersect at the point $F$ and lines $AD$ and $BC$ intersect at the point $E$. Let $K$ and $L$ be the orthogonal projections of $F$ onto lines $AD$ and $BC$ respectively, and let $M$, $S$ and $T$ be the midpoints of $EF$, $CF$ and $DF$ respectively. Prove that the second intersection point of the circumcircles of triangles $MKT$ and $MLS$ lies on the segment $CD$. [i](Greece - Silouanos Brazitikos)[/i]

VI Soros Olympiad 1999 - 2000 (Russia), 10.3

he center of the circle passing through the midpoints of all sides of triangle $ABC$ lies on the bisector of its angle $C$. Find the side $AB$ if $BC = a$, $AC = b$ ($a$ is not equal to $b$).

2013 Junior Balkan Team Selection Tests - Romania, 3

Let $D$ be the midpoint of the side $[BC]$ of the triangle $ABC$ with $AB \ne AC$ and $E$ the foot of the altitude from $BC$. If $P$ is the intersection point of the perpendicular bisector of the segment line $[DE]$ with the perpendicular from $D$ onto the the angle bisector of $BAC$, prove that $P$ is on the Euler circle of triangle $ABC$.

2010 Balkan MO Shortlist, G4

Let $ABC$ be a given triangle and $\ell$ be a line that meets the lines $BC, CA$ and $AB$ in $A_1,B_1$ and $C_1$ respectively. Let $A'$ be the midpoint, of the segment connecting the projections of $A_1$ onto the lines $AB$ and $AC$. Construct, analogously the points $B'$ and $C'$. (a) Show that the points $A', B'$ and $C'$ are collinear on some line $\ell'$. (b) Show that if $\ell$ contains the circumcenter of the triangle $ABC$, then $\ell' $ contains the center of it's Euler circle.

2022 Romania Team Selection Test, 1

Let $ABC$ be an acute scalene triangle and let $\omega$ be its Euler circle. The tangent $t_A$ of $\omega$ at the foot of the height $A$ of the triangle ABC, intersects the circle of diameter $AB$ at the point $K_A$ for the second time. The line determined by the feet of the heights $A$ and $C$ of the triangle $ABC$ intersects the lines $AK_A$ and $BK_A$ at the points $L_A$ and $M_A$, respectively, and the lines $t_A$ and $CM_A$ intersect at the point $N_A$. Points $K_B, L_B, M_B, N_B$ and $K_C, L_C, M_C, N_C$ are defined similarly for $(B, C, A)$ and $(C, A, B)$ respectively. Show that the lines $L_AN_A, L_BN_B,$ and $L_CN_C$ are concurrent.

Geometry Mathley 2011-12, 14.2

The nine-point Euler circle of triangle $ABC$ is tangent to the excircles in the angle $A,B,C$ at $Fa, Fb, Fc$ respectively. Prove that $AF_a$ bisects the angle $\angle CAB$ if and only if $AFa$ bisects the angle $\angle F_bAF_c$. Đỗ Thanh Sơn