Found problems: 95
2016 Oral Moscow Geometry Olympiad, 5
From point $A$ to circle $\omega$ tangent $AD$ and arbitrary a secant intersecting a circle at points $B$ and $C$ (B lies between points $A$ and $C$). Prove that the circle passing through points $C$ and $D$ and touching the straight line $BD$, passes through a fixed point (other than $D$).
Kyiv City MO Juniors 2003+ geometry, 2020.9.4
Let the point $D$ lie on the arc $AC$ of the circumcircle of the triangle $ABC$ ($AB < BC$), which does not contain the point $B$. On the side $AC$ are selected an arbitrary point $X$ and a point $X'$ for which $\angle ABX= \angle CBX'$. Prove that regardless of the choice of the point $X$, the circle circumscribed around $\vartriangle DXX'$, passes through a fixed point, which is different from point $D$.
(Nikolaev Arseniy)
2019 Tournament Of Towns, 3
Two equal non-intersecting wooden disks, one gray and one black, are glued to a plane. A triangle with one gray side and one black side can be moved along the plane so that the disks remain outside the triangle, while the colored sides of the triangle are tangent to the disks of the same color (the tangency points are not the vertices). Prove that the line that contains the bisector of the angle between the gray and black sides always passes through some fixed point of the plane.
(Egor Bakaev, Pavel Kozhevnikov, Vladimir Rastorguev) (Senior version[url=https://artofproblemsolving.com/community/c6h2102856p15209040] here[/url])
2019 Switzerland - Final Round, 1
Let $A$ be a point and let k be a circle through $A$. Let $B$ and $C$ be two more points on $k$. Let $X$ be the intersection of the bisector of $\angle ABC$ with $k$. Let $Y$ be the reflection of $A$ wrt point $X$, and $D$ the intersection of the straight line $YC$ with $k$. Prove that point $D$ is independent of the choice of $B$ and $C$ on the circle $k$.
2011 IFYM, Sozopol, 5
The vertices of $\Delta ABC$ lie on the graphics of the function $f(x)=x^2$ and its centroid is $M(1,7)$. Determine the greatest possible value of the area of $\Delta ABC$.
2021 Czech and Slovak Olympiad III A, 6
An acute triangle $ABC$ is given. Let us denote $X$ for each of its inner points $X_a, X_b, X_c$ its images in axial symmetries sequentially along the lines $BC, CA, AB$. Prove that all $X_aX_bX_c$ triangles have a common interior point.
(Josef Tkadlec)
2004 Germany Team Selection Test, 2
Three distinct points $A$, $B$, and $C$ are fixed on a line in this order. Let $\Gamma$ be a circle passing through $A$ and $C$ whose center does not lie on the line $AC$. Denote by $P$ the intersection of the tangents to $\Gamma$ at $A$ and $C$. Suppose $\Gamma$ meets the segment $PB$ at $Q$. Prove that the intersection of the bisector of $\angle AQC$ and the line $AC$ does not depend on the choice of $\Gamma$.
Geometry Mathley 2011-12, 15.4
Let $ABC$ be a fixed triangle. Point $D$ is an arbitrary point on the side $BC$. Point $P$ is fixed on $AD$. The circumcircle of triangle $BPD$ meets $AB$ at $E$ distinct from $B$. Point $Q$ varies on $AP$. Let $BQ$ and $CQ$ meet the circumcircles of triangles $BPD, CPD$ respectively at $F,Z$ distinct from $B,C$. Prove that the circumcircle $EFZ$ is through a fixed point distinct from $E$ and this fixed point is on the circumcircle of triangle $CPD$.
Kostas Vittas
2020 Dutch IMO TST, 2
Given is a triangle $ABC$ with its circumscribed circle and $| AC | <| AB |$. On the short arc $AC$, there is a variable point $D\ne A$. Let $E$ be the reflection of $A$ wrt the inner bisector of $\angle BDC$. Prove that the line $DE$ passes through a fixed point, regardless of point $D$.
1986 Dutch Mathematical Olympiad, 4
The lines $a$ and $b$ are parallel and the point $A$ lies on $a$. One chooses one circle $\gamma$ through A tangent to $b$ at $B$. $a$ intersects $\gamma$ for the second time at $T$. The tangent line at $T$ of $\gamma$ is called $t$.
Prove that independently of the choice of $\gamma$, there is a fixed point $P$ such that $BT$ passes through $P$.
Prove that independently of the choice of $\gamma$, there is a fixed circle $\delta$ such that $t$ is tangent to $\delta$.
2017 Saudi Arabia JBMO TST, 3
Let $(O)$ be a circle, and $BC$ be a chord of $(O)$ such that $BC$ is not a diameter. Let $A$ be a point on the larger arc $BC$ of $(O)$, and let $E, F$ be the feet of the perpendiculars from $B$ and $C$ to $AC$ and $AB$, respectively.
1. Prove that the tangents to $(AEF)$ at $E$ and $F$ intersect at a fixed point $M$ when $A$ moves on the larger arc $BC$ of $(O)$.
2. Let $T$ be the intersection of $EF$ and $BC$, and let $H$ be the orthocenter of $ABC$. Prove that $TH$ is perpendicular to $AM$.
2021 Alibaba Global Math Competition, 12
Let $A=(a_{ij})$ be a $5 \times 5$ matrix with $a_{ij}=\min\{i,j\}$. Suppose $f:\mathbb{R}^5 \to \mathbb{R}^5$ is a smooth map such that $f(\Sigma) \subset \Sigma$, where $\Sigma=\{x \in \mathbb{R}^5: xAx^T=1\}$. Denote by $f^{(n)}$ te $n$-th iterate of $f$. Prove that there does not exist $N \ge 1$ such that
\[\inf_{x \in \Sigma} \| f^{(n)}(x)-x\|>0, \forall n \ge N.\]
2009 Postal Coaching, 5
A point $D$ is chosen in the interior of the side $BC$ of an acute triangle $ABC$, and another point $P$ in the interior of the segment $AD$, but not lying on the median through $C$. This median (through $C$) intersects the circumcircle of a triangle $CPD$ at $K(\ne C)$. Prove that the circumcircle of triangle $AKP$ always passes through a fixed point $M(\ne A)$ independent of the choices of the points $D$ and $P.$
2008 USA Team Selection Test, 7
Let $ ABC$ be a triangle with $ G$ as its centroid. Let $ P$ be a variable point on segment $ BC$. Points $ Q$ and $ R$ lie on sides $ AC$ and $ AB$ respectively, such that $ PQ \parallel AB$ and $ PR \parallel AC$. Prove that, as $ P$ varies along segment $ BC$, the circumcircle of triangle $ AQR$ passes through a fixed point $ X$ such that $ \angle BAG = \angle CAX$.
1999 Kazakhstan National Olympiad, 7
On a sphere with radius $1$, a point $ P $ is given. Three mutually perpendicular the rays emanating from the point $ P $ intersect the sphere at the points $ A $, $ B $ and $ C $. Prove that all such possible $ ABC $ planes pass through fixed point, and find the maximum possible area of the triangle $ ABC $
2019 Tournament Of Towns, 2
Let $\omega$ be a circle with the center $O$ and $A$ and $C$ be two different points on $\omega$. For any third point $P$ of the circle let $X$ and $Y$ be the midpoints of the segments $AP$ and $CP$. Finally, let $H$ be the orthocenter (the point of intersection of the altitudes) of the triangle $OXY$ . Prove that the position of the point H does not depend on the choice of $P$.
(Artemiy Sokolov)
2004 Germany Team Selection Test, 2
Three distinct points $A$, $B$, and $C$ are fixed on a line in this order. Let $\Gamma$ be a circle passing through $A$ and $C$ whose center does not lie on the line $AC$. Denote by $P$ the intersection of the tangents to $\Gamma$ at $A$ and $C$. Suppose $\Gamma$ meets the segment $PB$ at $Q$. Prove that the intersection of the bisector of $\angle AQC$ and the line $AC$ does not depend on the choice of $\Gamma$.
1979 IMO, 3
Two circles in a plane intersect. $A$ is one of the points of intersection. Starting simultaneously from $A$ two points move with constant speed, each travelling along its own circle in the same sense. The two points return to $A$ simultaneously after one revolution. Prove that there is a fixed point $P$ in the plane such that the two points are always equidistant from $P.$
2006 Sharygin Geometry Olympiad, 2
Points $A, B$ move with equal speeds along two equal circles.
Prove that the perpendicular bisector of $AB$ passes through a fixed point.
1986 IMO, 2
Given a point $P_0$ in the plane of the triangle $A_1A_2A_3$. Define $A_s=A_{s-3}$ for all $s\ge4$. Construct a set of points $P_1,P_2,P_3,\ldots$ such that $P_{k+1}$ is the image of $P_k$ under a rotation center $A_{k+1}$ through an angle $120^o$ clockwise for $k=0,1,2,\ldots$. Prove that if $P_{1986}=P_0$, then the triangle $A_1A_2A_3$ is equilateral.
1998 Czech And Slovak Olympiad IIIA, 5
A circle $k$ and a point $A$ outside it are given in the plane. Prove that all trapezoids, whose non-parallel sides meet at $A$, have the same intersection of diagonals.
1985 Traian Lălescu, 2.3
Let $ X $ be the power set of set of $ \{ 0\}\cup\mathbb{N} , $ and let be a function $ d:X^2\longrightarrow\mathbb{R} $ defined as
$$ d(U,V)=\sum_{n\in\mathbb{N}}\frac{\chi_U (n) +\chi_V (n) -2\chi_{U\cap V} (n)}{2} , $$
where $ \chi_W (n)=\left\{ \begin{matrix} 1,& n\in W\\ 0,& n\not\in W \end{matrix} \right. ,\quad\forall W\in X,\forall n\in\mathbb{N} . $
[b]a)[/b] Prove that there exists an unique $ V' $ such that $ \lim_{k\to\infty} d\left( \{ k+i|i\in\mathbb{N}\} , V'\right) =0. $
[b]b)[/b] Demonstrate that for all $ V\in X $ there exists a $ v\in\mathbb{N} $ with $ d\left( \left\{ \frac{3}{2} -\frac{1}{2}(-1)^{v} \right\} , V \right) >\frac{1}{k} . $
[b]c)[/b] Let $ f: X\longrightarrow X,\quad f(X)=\left\{ 1+x|x\in X\right\} . $ Calculate $ d\left( f(A),f(B) \right) $ in terms of $ d(A,B) $ and prove that $ f $ admits an unique fixed point.
1979 IMO Longlists, 71
Two circles in a plane intersect. $A$ is one of the points of intersection. Starting simultaneously from $A$ two points move with constant speed, each travelling along its own circle in the same sense. The two points return to $A$ simultaneously after one revolution. Prove that there is a fixed point $P$ in the plane such that the two points are always equidistant from $P.$
2003 IMO Shortlist, 2
Three distinct points $A$, $B$, and $C$ are fixed on a line in this order. Let $\Gamma$ be a circle passing through $A$ and $C$ whose center does not lie on the line $AC$. Denote by $P$ the intersection of the tangents to $\Gamma$ at $A$ and $C$. Suppose $\Gamma$ meets the segment $PB$ at $Q$. Prove that the intersection of the bisector of $\angle AQC$ and the line $AC$ does not depend on the choice of $\Gamma$.
2019 Tournament Of Towns, 3
Two not necessarily equal non-intersecting wooden disks, one gray and one black, are glued to a plane. An infinite angle with one gray side and one black side can be moved along the plane so that the disks remain outside the angle, while the colored sides of the angle are tangent to the disks of the same color (the tangency points are not the vertices). Prove that it is possible to draw a ray in the angle, starting from the vertex of the angle and such that no matter how the angle is positioned, the ray passes through some fixed point of the plane.
(Egor Bakaev, Ilya Bogdanov, Pavel Kozhevnikov, Vladimir Rastorguev) (Junior version [url=https://artofproblemsolving.com/community/c6h2094701p15140671]here[/url])
[hide=note]There was a mistake in the text of the problem 3, we publish here the correct version. The solutions were estimated according to the text published originally.[/hide]