This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

1988 IMO Shortlist, 3

The triangle $ ABC$ is inscribed in a circle. The interior bisectors of the angles $ A,B$ and $ C$ meet the circle again at $ A', B'$ and $ C'$ respectively. Prove that the area of triangle $ A'B'C'$ is greater than or equal to the area of triangle $ ABC.$

1996 IMO Shortlist, 5

Let $ ABCDEF$ be a convex hexagon such that $ AB$ is parallel to $ DE$, $ BC$ is parallel to $ EF$, and $ CD$ is parallel to $ FA$. Let $ R_{A},R_{C},R_{E}$ denote the circumradii of triangles $ FAB,BCD,DEF$, respectively, and let $ P$ denote the perimeter of the hexagon. Prove that \[ R_{A} \plus{} R_{C} \plus{} R_{E}\geq \frac {P}{2}. \]

1989 All Soviet Union Mathematical Olympiad, 510

A convex polygon is such that any segment dividing the polygon into two parts of equal area which has at least one end at a vertex has length $< 1$. Show that the area of the polygon is $< \pi /4$.

2020 Saint Petersburg Mathematical Olympiad, 3.

On the side $AD$ of the convex quadrilateral $ABCD$ with an acute angle at $B$, a point $E$ is marked. It is known that $\angle CAD = \angle ADC=\angle ABE =\angle DBE$. (Grade 9 version) Prove that $BE+CE<AD$. (Grade 10 version) Prove that $\triangle BCE$ is isosceles.(Here the condition that $\angle B$ is acute is not necessary.)

1966 IMO Shortlist, 21

Prove that the volume $V$ and the lateral area $S$ of a right circular cone satisfy the inequality \[\left( \frac{6V}{\pi}\right)^2 \leq \left( \frac{2S}{\pi \sqrt 3}\right)^3\] When does equality occur?

1992 Austrian-Polish Competition, 7

Consider triangles $ABC$ in space. (a) What condition must the angles $\angle A, \angle B , \angle C$ of $\triangle ABC$ fulfill in order that there is a point $P$ in space such that $\angle APB, \angle BPC, \angle CPA$ are right angles? (b) Let $d$ be the longest of the edges $PA,PB,PC$ and let $h$ be the longest altitude of $\triangle ABC$. Show that $\frac{1}{3}\sqrt6 h \le d \le h$.

2010 Saudi Arabia BMO TST, 3

Let $ABC$ be a right angled triangle with $\angle A = 90^o$and $BC = a$, $AC = b$, $AB = c$. Let $d$ be a line passing trough the incenter of triangle and intersecting the sides $AB$ and $AC$ in $P$ and $Q$, respectively. (a) Prove that $$b \cdot \left( \frac{PB}{PA}\right)+ c \cdot \left( \frac{QC}{QA}\right) =a$$ (b) Find the minimum of $$\left( \frac{PB}{PA}\right)^ 2+\left( \frac{QC}{QA}\right)^ 2$$

1997 Brazil Team Selection Test, Problem 5

Let $ABC$ be an acute-angled triangle with incenter $I$. Consider the point $A_1$ on $AI$ different from $A$, such that the midpoint of $AA_1$ lies on the circumscribed circle of $ABC$. Points $B_1$ and $C_1$ are defined similarly. (a) Prove that $S_{A_1B_1C_1}=(4R+r)p$, where $p$ is the semi-perimeter, $R$ is the circumradius and $r$ is the inradius of $ABC$. (b) Prove that $S_{A_1B_1C_1}\ge9S_{ABC}$.

IV Soros Olympiad 1997 - 98 (Russia), 11.4

Find the largest value of the area of the projection of the cylinder onto the plane if its radius is $r$ and its height is $h$ (orthogonal projection).

1996 Romania National Olympiad, 4

a) Let $AB CD$ be a regular tetrahedron. On the sides $AB$, $AC$ and $AD$, the points $M$, $N$ and $P$, are considered. Determine the volume of the tetrahedron $AMNP$ in terms of $x, y, z$, where $x=AM$, $y=AN$, $z=AP$. b) Show that for any real numbers $x, y, z, t, u, v \in (0, 1)$ : $$xyz + uv(1- x) + (1- y)(1- v)t + (1- z)(1- w)(1- t) < 1.$$

2007 Grigore Moisil Intercounty, 1

For a point $ P $ situated in the plane determined by a triangle $ ABC, $ prove the following inequality: $$ BC\cdot PB\cdot PC+AC\cdot PC\cdot PA +AB\cdot PA\cdot PB\ge AB\cdot BC\cdot CA $$

V Soros Olympiad 1998 - 99 (Russia), 10.9

Six cities are located at the vertices of a convex hexagon, all angles of which are equal. Three sides of this hexagon have length $a$, and the remaining three have length $b$ ($a \le b$). It is necessary to connect these cities with a network of roads so that from each city you can drive to any other (possibly through other cities). Find the shortest length of such a road network.

2021 Yasinsky Geometry Olympiad, 3

In the triangle $ABC$, $h_a, h_b, h_c$ are the altitudes and $p$ is its half-perimeter. Compare $p^2$ with $h_ah_b + h_bh_c + h_ch_a$. (Gregory Filippovsky)

OMMC POTM, 2024 7

Let $A$ and $B$ be two points on the same line $\ell$. If the points $P$ and $Q$ are two points $X$ on $\ell$ that mazimize and minimize the ratio $\frac{AX}{BX}$ respectively, prove that $A,B,P$ and $Q$ are concyclic.

2009 Hanoi Open Mathematics Competitions, 10

Prove that $d^2+(a-b)^2<c^2$ ,where $d$ is diameter of the inscribed circle of $\vartriangle ABC$

2024 Moldova EGMO TST, 4

In the acute-angled triangle $ABC$, on the lines $BC$, $AC$, $AB$ we consider the points $D$, $E$ and, respectively, $F$, such that $AD\perp AC, BE\perp AB, CF\perp AC$. Let the point $A', B', C'$ be such that $\{A'\}=BC\cap EF, \{B'\}=AC\cap DF, \{C'\}=AB\cap DE$. Prove that the following inequality is true $$\frac{A'F}{A'E} \cdot \frac{B'D}{B'F} \cdot \frac{C'E}{C'D}\geq8$$

1986 All Soviet Union Mathematical Olympiad, 438

A triangle and a square are circumscribed around the unit circle. Prove that the intersection area is more than $3.4$. Is it possible to assert that it is more than $3.5$?

KoMaL A Problems 2017/2018, A. 702

Fix a triangle $ABC$. We say that triangle $XYZ$ is elegant if $X$ lies on segment $BC$, $Y$ lies on segment $CA$, $Z$ lies on segment $AB$, and $XYZ$ is similar to $ABC$ (i.e., $\angle A=\angle X, \angle B=\angle Y, \angle C=\angle Z $). Of all the elegant triangles, which one has the smallest perimeter?

1982 IMO Shortlist, 2

Let $K$ be a convex polygon in the plane and suppose that $K$ is positioned in the coordinate system in such a way that \[\text{area } (K \cap Q_i) =\frac 14 \text{area } K \ (i = 1, 2, 3, 4, ),\] where the $Q_i$ denote the quadrants of the plane. Prove that if $K$ contains no nonzero lattice point, then the area of $K$ is less than $4.$

Kyiv City MO 1984-93 - geometry, 1990.8.2

A line passes through the center $O$ of an equilateral triangle $ABC$ and intersects the side $BC$. At what angle wrt $BC$ should this line be drawn this line so that its segment inside the triangle has the smallest possible length?

2017 Germany, Landesrunde - Grade 11/12, 5

In a right-angled triangle let $r$ be the inradius and $s_a,s_b$ be the lengths of the medians of the legs $a,b$. Prove the inequality \[ \frac{r^2}{s_a^2+s_b^2} \leq \frac{3-2 \sqrt2}{5}. \]

Mathley 2014-15, 2

Let $ABC$ be a triangle with a circumcircle $(K)$. A circle touching the sides $AB,AC$ is internally tangent to $(K)$ at $K_a$; two other points $K_b,K_c$ are defined in the same manner. Prove that the area of triangle $K_aK_bK_c$ does not exceed that of triangle $ABC$. Nguyen Minh Ha, Hanoi University of Education, Xuan Thuy, Cau Giay, Hanoi.

1989 IMO Longlists, 2

$ ABC$ is a triangle, the bisector of angle $ A$ meets the circumcircle of triangle $ ABC$ in $ A_1$, points $ B_1$ and $ C_1$ are defined similarly. Let $ AA_1$ meet the lines that bisect the two external angles at $ B$ and $ C$ in $ A_0$. Define $ B_0$ and $ C_0$ similarly. Prove that the area of triangle $ A_0B_0C_0 \equal{} 2 \cdot$ area of hexagon $ AC_1BA_1CB_1 \geq 4 \cdot$ area of triangle $ ABC$.

2021 239 Open Mathematical Olympiad, 5

The median $AD$ is drawn in triangle $ABC$. Point $E$ is selected on segment $AC$, and on the ray $DE$ there is a point $F$, and $\angle ABC = \angle AED$ and $AF // BC$. Prove that from segments $BD, DF$ and $AF$, you can make a triangle, the area of ​​which is not less half the area of ​​triangle $ABC$.

1984 Bundeswettbewerb Mathematik, 4

In a square field of side length $12$ there is a source that contains a system of straight irrigation ditches. This is laid out in such a way that for every point of the field the distance to the next ditch is at most $1$. Here, the source is as a point and are the ditches to be regarded as stretches. It must be verified that the total length of the irrigation ditches is greater than $70$ m. The sketch shows an example of a trench system of the type indicated. [img]https://cdn.artofproblemsolving.com/attachments/6/5/5b51511da468cf14b5823c6acda3c4d2fe8280.png[/img]